Залежи и месторождения нефти и газа. Виды залежей

В основу большинства разработанных к настоящему времени классификаций залежей нефти и газа положены генезис и строение за­ключающих залежи ловушек и природных резервуаров. Однако эти признаки характеризуют в первую очередь не собственно залежи неф­ти и газа, а природные резервуары или содержащие их элементы зем­ной коры.

Залежью называют естественное локальное скопление нефти или газа, занимающее часть (ловушку) природного резервуара. Если раз­работка залежи рентабельна, она называется промышленной залежью.

В большинстве случаев формирование залежей нефти и газа происходит по антиклинально-гравитационной модели, описанной в 1859 г. М. Дрейком в США. Согласно этой модели нефть и газ, как менее плотные, вытесняются из газонефтеводяного флюида в верхние части резервуаров и локализуются в ловушках, которые обычно нахо­дятся в выступах верхних частей резервуаров. В залежи, сформировавшейся по этой модели, все части гидродинами­чески связаны, что создает возможность для гравитационной диффе­ренциации флюидов. Находясь в резервуаре, залежь нефти или газа сосредоточена в породе-коллекторе и сверху перекрыта породой-флюидоупором. Снизу, под залежью располагается тот же коллектор, но насыщенный водой.

В качестве попытки разностороннего рассмотрения залежей следует рассматривать классификацию залежей УВ по следующим признакам: запасы, строение коллектора в ловушке, тип коллектора, тип экрана вловушке, величина рабочих дебитов. Как показывает практика, наиболее важной, с точки зрения экономики и методики ве­дения поисково-разведочных работ, является классификация залежей по их фазовому состоянию . Ниже (табл.1) приведен пример подобной классификации.

Таблица 1.

Классификация и номенклатура залежей УВ по фазовому состоянию

и количественному соотношению газа, нефти и конденсата

Предлагаемое наимено­ вание залежей (обозна­ чение)

Основные особенности залежей

Однофазовые залежи

Газовые (Г)

Состоят в основном из СН 4 с содержа­нием пентана и более тяжелых УВ не более 0,2 % объема залежи

Газоконденсатногазовые (ГКГ)

Газовые залежи с содержанием С5 + высш. в пределах 0,2-0,6 % объема за­лежи, что примерно соответствует со­держанию конденсата до 30 см 3 /м 3

Газоконденсатные (ГК)

Газовые залежи с содержанием С, + высш. в пределах 0,6-4 % объема зале­жи, что примерно соответствует со­держанию конденсата 30-250 см 3 /м 3

Конденсатные (К)

Газовые залежи с содержанием Cs + высш. более 4 % объема залежи, что примерно соответствует содержанию конденсата более 250 cm 3 /m 3

Залежи переходного состояния (ЗПС)

Залежи УВ, которые по своим физиче­ским свойствам (вязкости, плотности) в пластовых условиях близки к крити­ческому состоянию, занимая промежу­точное положение между жидкостью и газом

Нефтяные (Н)

Залежи нефти с различным содержани­ем растворенного газа (обычно менее 200-250 м 3 /т)

Двухфазовые залежи

Нефтегазовые (НГ)

Газовые залежи с нефтяной оторочкой; запасы газа больше геологических за­пасов нефти

Газонефтяные (ГН)

Залежи нефти с газовой шапкой; геоло­гические запасы нефти превышают за­пасы газа

Нефтегазоконденсатные (НГК)

Газоконденсатные или конденсатные залежи с нефтяной оторочкой; запасы газа и конденсата превышают запасы нефти

Газоконденсатнонефтяные (ГКН)

Нефтяные залежи с газоконденсатными шапками; геологические запасы нефти превышают запасы газа и кон­денсата

Рис. 1. Схема пластово-сводовой газо-нефтяной залежи.

1– подошва нефтяной залежи; 2 – внешний контур нефтеносности; 3 – внутренний контур нефтеносности; 4 – поверхность газонефтяного раздела; 5 – внешний контур газоносности; 6 – внутренний контур газоносности; 7 – длина залежи; 8 – ширина залежи; 9 – высота нефтяной залежи; 10 – высота газовой шапки; 11 – общая высота газонефтяной залежи; 12 – газовая часть залежи; 13 – газонефтяная часть залежи; 14 – нефтяная часть залежи; 15 – водонефтяная часть залежи

Рис. 2. Схема массивной нефтегазовой залежи.

1 – подошва нефтяной залежи; 2 – внешний контур нефтеносности; 3 – поверхность газонефтяного раздела; 4 – внешний контур газоносности; 6 – длина залежи; 5 – ширина залежи; 7 – высота нефтяной залежи; 8 – высота газовой шапки; 9 – общая высота газонефтяной залежи; 10 – газонефтяная часть залежи; 11 – водонефтяная часть залежи

Целесообразно принять генетическую классификацию А.А. Бакирова (1960), который развивая представления И.М. Губкина, выделил четыре основных класса локальных скоплений нефти и газа: структурный, литологический, рифогенный и стратиграфический (рис. 3).

При изучении этого раздела необходимо получить знания, достаточ­ные для установления генетического типа залежи, определения по гео­логической документации и схематическому изображению таких элементов залeжи, как высота, длина, ширина, и площадь залежи, амплитуда ловушки, водонефтяной контакт (ВНК), газонефтяной (ГНК), газоводяной (ГВК), внешние и внутренние контуры нефтеносности (газоносности) и т.п.

Класс

Группа

Подгруппа

Структурные

Залежи антиклинальных структур

Сводовые (рис.4).

Тектонически экранированные (рис.5).

Приконтактные (рис.6).

Висячие (рис.7).

Залежи моноклиналей

Экранированные разрывными нарушениями (рис.8а).

Связанные с флексурными образованиями (рис. 8б).

Связанные со структурными носами (рис. 8в).

Залежи синклинальных структур

Рифогенные

Связанные с рифовыми массивами

Залежи в одиночном рифе (рис.9а).

Залежи в группе рифовых массивов (рис.9б).

Литологические

Литологически экранированные

Приуроченные к участкам выклинивания коллекторов (рис. 10а).

Приуроченные к участкам замещения проницаемых пород непроницаемыми (рис. 10б).

Экранированные асфальтом или битумом (рис.10в).

Литологически ограниченные

Приуроченные к песчаным образованиям русел палеорек (шнурковые или рукавообразные)

(рис.11а).

Приуроченные к прибрежно-песчаным валоподобным образованиям ископаемых баров (рис.11б).

Линзовидные (Гнездовидные) (рис.11в).

Стратиграфические

Залежи в коллекторах срезанных эрозией и перекрытых непроницаемыми породами

Связанные со стратигра-фическими несогласиями на локальных структурах (рис.12а).

Связанные с моноклиналями (рис.12б).

Связанные со стратигра-фическими несогласиями, приуроченными к эродированной поверхности погребенных останцев палеорельефа (рис.12в).

Связанные с выступами кристаллических пород (рис.12г).

Рис.3 Генетическая классификация залежей нефти и газа по А.А.Бакирову.

Рис. 4. Сводовые залежи: а - ненарушенные; б - нарушенные; в - структур, осложненных криптодиапиром или вулканогенными образованиями; г - солянокупольных структур. Условные обозначения: 1 - нефть в профиле; 2 - нефть в плане; 3 - стратоизогипсы по кровле продуктивного пласта; 4 - нарушения; 5 - известняки; 6 -вулканогенные образования, 7 - соляной шток; 8 - пески; 9 - глины; 10 - грязевой вулкан и диапиры; 11 - мергели

Рис. 5. Тектонически экранированные залежи.

а – присбросовая, б – привзбросовая, в – структуры, осложненной диапиризмом или грязевым вулканизмом; г – солянокупольной структурой, д – поднадвиговая.

Рис. 6. Приконтакные залежи на структурах:

а – с соляным штоком, б – с диапировым ядром или с образование грязевого вулканизма, в – с вулканогенными образованиями.

Рис. 7. Висячие залежи антиклинальных структур:

а – ненарушенного строения, б – осложненных разрывом нарушений, в – осложненных криптодиапиром или вулканогенными образованиями.

Рис. 8. Залежи моноклиналей:

а – экранированные разрывными нарушениями, б – приуроченные к флексурным осложнениям, в – связанные со структурными носами.

Рис. 9. Залежи рифогенных образований в одиночном рифовом массиве (а), в группе рифовых массивов (б).

Рис.10.Литологически экранированные залежи приуроченные к участкам выклинивания пласта-коллектора (а) и замещения проницаемых пород непроницаемыми (б), и залежь, запечатанная асфальтом (в).

Рис. 11. Литологически ограниченные залежи приуроченные:

а – к песчаным образованиям русел палеорек, б – к прибрежным песчаным образованиям ископаемых баров, в – к линзам песчаных пород в слабопроницаемых глинистых отложениях.

Рис. 12. Стратиграфические залежи:

а – в пределах локальной структуры, б – на моноклиналях, в – на поверхности погребенных останцев палеорельефа, г – на поверхности выступов кристаллических пород.

Приложение 1.

Федеральное агентство по образованию

Пермский Национальный Исследовательский Политехнический Университет

КОНТРОЛЬНАЯ РАБОТА

(для студентов заочного отделения)

Генетическая классификация залежей нефти и газа по форме ловушек

Разработке классификации различных типов залежей нефти и газа посвящены многочисленные работы. Наиболее известны классификации И.О. Брода, Н.А. Еременко, Н.Ю. Успенской, А.А. Бакирова.

В общем случае все залежи можно разделить на пластовые и массивные. В пластовых залежах отмечается приуроченность залежи к отдельным пластам.

Образование массивной залежи связано с терригенным или карбонатным массивным резервуаром, когда при большом этаже нефтегазоносности залежь сверху контролируется формой верхней поверхности ловушки, а снизу горизонтальный контакт сечет все тело массива. Массивные залежи формируются в рифах, антиклинальных структурах, эрозионных выступах, представляющих собой останцы древнего рельефа. С массивными залежами связаны наиболее значительные скопления нефти и газа, открытые в нашей стране.

Согласно классификации А. А. Бакирова, учитывающей главнейшие особенности формирования ловушек, с которыми связаны залежи, выделяются четыре основных класса локальных скоплений нефти и газа:

· структурные

· рифогенные

· стратиграфические

· литологические.

К классу структурных залежей относятся залежи, приуроченные к различным видам локальных тектонических структур. Наиболее часто встречающиеся залежи этого класса – сводовые, тектонически экранированные и приконтактные.

Сводовые залежи (пластовые сводовые, по Г.А. Габриэлянцу) формируются в сводовых частях локальных структур (рис. 7.7)

Рис. 7.7. Сводовые залежи в разрезе и в плане (по А.А. Бакирову):

а - ненарушенные; б - нарушенные; в структурах, осложненных:

в - криптодиапиром или вулканогенными образованиями, г - соляными куполами.

1,2 - нефть соответственно на профиле и в плане; 3 - стратоизогипсы по кровле

продуктивного пласта, м; 4 - нарушения; 5 - известняки; 6 - вулканогенные образования; 7 - соляной шток; 8 - песчаные породы; 9 - глины; 10 - контур нефтеносности

Тектонически экранированные залежи (пластовые тектонически экранированные, по Г.А. Габриэлянцу) формируются вдоль разрывных смещений, осложняющих строение локальных структур (рис. 7.8).

Подобные залежи могут находиться в различных частях структуры: на своде, крыльях или периклиналях

Приконтактные залежи образуются в продуктивных пластах, контактирующих с соляным штоком, глиняным диапиром или же с вулканогенными образованиями (рис. 7.9).

В отличие выше представленных пластовых залежей, рифовые залежи относятся к массивным. Залежи этого класса образуются в теле рифовых массивов (рис. 7.10).

Типичным примером могут служить залежи в рифогенных массивах Ишимбаевского района Башкирского Приуралья.

В составе класса литологических залежей выделяются две группы залежей: литологически экранированных и литологически ограниченных.

Залежи литологически экранированные располагаются в участках выклинивания пласта-коллектора (рис. 7.11).

Онисвязаны с выклиниванием пласта-коллектора по восстанию слоев; с замещением проницаемых пород непроницаемыми; с запечатыванием пласта-коллектора асфальтом.

Залежи литологически ограниченные приурочены к песчаным образованиям ископаемых русел палеорек (шнурковые или рукавообразные), к прибрежным песчаным валоподобным образованиям или к гнездообразно залегающим породам-коллекторам, окруженным со всех сторон плохопроницаемыми породами (рис. 7.12).

Литологически ограниченные залежи, по И. О. Броду, связаны с резервуарами, представленными песчаными накоплениями различной формы в слабопроницаемых толщах – в песчаных образованиях ископаемых русел палеорек - шнурковые или рукавообразные; в прибрежных песчаных валоподобных образованиях ископаемых баров (баровые); в гнездообразно залегающих песчаных коллекторах, окруженных со всех сторон плохопроницаемыми глинистыми образованиями, в дельтах; в кавернозных зонах – карстовые и на участках проницаемых пород среди плотных.

Выделяют залежи простого и сложного строения. К залежам простого строения принадлежат залежи, приуроченные к литологически выдержанным пластам и заключенные в едином локальном поднятии.

К категории сложных относятся многопластовые и многокупольные залежи. Многопластовая залежь нефти и газа (рис. 7.13) охватывает несколько пластов, между которыми существует гидродинамическая связь.

В этом случае, несмотря на сложность строения ловушки, водонефтяной раздел, пластовое давление и свойства нефти во всех пластах будут примерно одинаковыми.

В случаях, когда нефть или газ заполняют несколько расположенных рядом антиклинальных ловушек, образуется многокупольная залежь (рис. 7.14).

При этом синклинальные прогибы между складками также бывают заполнены нефтью или газом, а пластовая вода смещается на периферию.

Запасы нефти и газа в отдельных залежах могут быть весьма различными: от незначительных до нескольких миллиардов тонн нефти или нескольких триллионов кубических метров газа. Основными показателями промышленной ценности залежи являются запасы, заключенные в ней, и экономически обоснованные минимально рентабельные дебиты нефти и газа, обеспечивающие экономическую рентабельность промышленного освоения залежи. По этим показателям залежи делятся на:

q балансовые, разработка которых в настоящее время целесообразна,

q забалансовые, разработка которых в настоящее время нерентабельна, но которые могут рассматриваться в качестве объекта для промышленного освоения в дальнейшем.

По значениям рабочих дебитов залежи делятся на 4 класса: высокодебитные, среднедебитные, малодебитные и низкодебитные (табл. 7.1).

Естественное скопление нефти в недрах называется нефтяной залежью. Практически всякая нефтяная залежь содержит и газ, т.е. является по существу нефтегазовой залежью. В природе встречаются также и чисто газовые залежи, т.е. скопления в пористых породах естественного газа.

Основные известные месторождения нефти и газа сосредоточены именно в осадочных породах. Характерный признак осадочных гор­ных пород - их слоистость. Данные породы сложены в основном из почти параллельных слоев (пластов), отличающихся друг от друга со­ставом, структурой, твердостью и окраской. Поверхность, ограничи­вающая пласт снизу, называется подошвой, а сверху - кровлей.

Пласты осадочных пород могут залегать не только горизонтально, но и в виде складок (рис.1), образовавшихся в ходе колебательных, тектонических и горообразовательных процессов. Изгиб пласта, на­правленный выпуклостью вверх, называется антиклиналью, а выпук­лостью вниз - синклиналью. Соседние антиклиналь и синклиналь в совокупности образуют полную складку.

Рис.1.Складка, образованная осадочными породами.

Рис.2.Схемы структурных ловушек.

а - ловушка в сводовой части локального поднятия; б – тектонически

экранированная ловушка в присводовой части локального поднятия.


В России почти 90% найденных нефти и газа находятся в антиклина­лях, за рубежом - около 70%. Размеры антиклиналей составляют в среднем: длина 5... 10 км, ширина 2...3 км, высота 50...70 м. Однако известны и гигантские антиклинали. Так, самое крупное в мире неф­тяное месторождение Гавар (Саудовская Аравия) имеет размеры в плане 225x25 км и высоту 370 м, а газовое месторождение Уренгой (Россия): 120x30 км при высоте 200 м.

По проницаемости горные породы делятся на проницаемые (кол­лекторы) и непроницаемые (покрышки). Коллекторы - это любые горные породы, которые могут вмещать в себя и отдавать жидкости и газы, а также пропускать их через себя при перепаде давления. Наилучшими коллекторскими свойствами обладают поровые кол­лекторы.

Неплохими способностями вмещать в себя и отдавать жид­кости и газы, а также пропускать их через себя могут обладать и дру­гие типы коллекторов. Так, на некоторых месторождениях Саудов­ской Аравии взаимосвязанные системы трещин создают каналы длиной до 30 км. К трещиноватым коллекторам за рубежом приурочено более 50% открытых запасов нефти, а в России - 12%.

Покрышки - это практически непроницаемые горные породы. Обычно ими бывают породы химического или смешанного происхож­дения, не нарушенные трещинами. Чаще всего роль покрышек вы­полняют глины: смачиваясь водой, они разбухают и закрывают все поры и трещины в породе. Кроме того, покрышками могут быть ка­менная соль и известняки.



Промышленные залежи нефти и газа встречаются лишь в осадоч­ных породах. Нефть и газ заполняют поры и пустоты между отдель­ными частицами этих пород.

Известно, что к осадочным породам относятся пески, песчаники, известняки, доломиты, глины и т. п. Однако в глинистых породах промышленных скоплений нефти не встречается. Глинистые пласты в нефтяных месторождениях играют лишь роль непроницаемых перекрытий, между которыми залегают более пористые породы, насыщенные нефтью, газом или водой. Если бы не было глинистых пород, подстилающих и перекрывающих скопления нефти или газа, то последние рассеялись бы по всей толще земной коры.

Для образования нефтяных и газовых залежей кроме наличия пористых пород, закрытых сверху непроницаемыми пластами, тре­буется еще одно условие: определенные структурные формы пласта. Многолетняя практика эксплуатации нефтяных и газовых залежей показала, что в ненарушенных (горизонтальных) пластах нефть и газ не встречаются, все скопления их находятся в различных складках.

Наиболее распространены и имеют наибольшее значение в строении нефтяных и газовых залежей структурные формы антиклинального типа и структурные форм связанны с моноклинальным залеганием пластов. Большинство нефтяных и газовых залежей мира приурочено именно к этим структурным формам.

На рис. 1 представлена схема нефтегазовой залежи пластового типа. Ее основными элементами и параметрами являются геометри­ческие размеры и форма, а также положение внешних и внутренних контуров нефтеносности и газоносности.

Рис.3.Схема нефтегазовой залежи пластового типа

1 – внутренний контур газоносности; 2 – внешний контур газоносности;

3 – внутренний контур нефтеносности; 4 – внешний контур нефтеносности.

Линия пересечения поверхности водонефтяного контакта с кровлей пласта называется внешним контуром нефтеносности, а с подошвой пласта - внутренним контуром нефтеносности.

Скопление свободного газа над нефтью в залежи называется газовой шапкой.

Линия пересечения поверхности нефтегазового раздела с кровлей пласта представляет внешний контур газоносности, а с подошвой пласта - внутренний контур газоносности.

Кроме залежей нефти и газа пластового типа встречаются также массивные нефтяные или газовые залежи, приуроченные к крупным массивам или рифам, сложенным обычно известняками. Существуют также пластовые экранированные и литологически ограниченные залежи нефти и газа.

Постоянными спутниками нефти в нефтяных залежах являются нефтяной газ и пластовая вода. Распределение их по высоте залежи, как видно из схемы на рис. 1, соответствует их плотностям: в верх­них частях антиклинальной или моноклинальной складки находится газ, ниже газа залегает нефть, а последнюю подпирает снизу вода.

Объем пустот в горной породе, состоящих из пор, поровых каналов между отдельными зернами и частицами породы, трещин, каверн и т. п., принято называть пористостью. Численная величина пори­стости определяется отношением общего объема всех пустот в породе ко всему объему породы с пустотами.

Величина пористости различных пород изменяется в весьма широких пределах - от долей процента до нескольких десятков процентов. Так, для изверженных пород пористость колеблется в пределах 0,05 - 1,25% общего объема породы с пустотами, для нефтяных песков - от 18 до 35%, для песчаников - от 13 до 28%. Проницаемость породы зависит от размеров пор и каналов, свя­зывающих эти поры. Чем больше размер пор, тем выше проница­емость и наоборот. Например, глины могут обладать такой же пори­стостью, что и пески, т.е. в единице объема глинистой породы может вместиться столько же жидкости, сколько в таком же объеме песка. Однако вследствие ничтожно малой величины отдельных пор и кана­лов между частицами глины силы сцепления и внутреннего трения в них настолько велики, что движение жидкости или газа в глини­стом пласте почти отсутствует. Глины практически непроницаемы для жидкости и газа.

Кроме геометрического объема нефтяной или газовой залежи, пористости и проницаемости пород, складывающих эту залежь, ее промышленная ценность зависит также от величины пластовой энергии, от качества заключенной в ней нефти и, что особенно важно, - от нефте - и газонасыщенности.

Нефтенасыщенностью (газонасыщенностью) называется отношение объема пор в залежи, заполненных нефтью (газом), к общему-объему пор. Дело в том, что в порах нефте- или газосодержащей породы всегда содержится вода, остающаяся неподвижной в процессе-эксплуатации залежи. Эта вода «связана» с породой вследствие действия сил сцепления породы с водой. Установлено, что из общего объема пор нефтесодержащей породы нефтью бывает заполнено от 60 до 90% пор, остальной: объем пор заполнен водой.

Совокупность залежей неф­ти и газа, расположенных на одном участке земной поверхности, представляет собой нефтяное или газовое месторождение.

На рис.4 схематично изображено многопластовое нефтегазовое месторождение антиклинального типа. В этом месторождении пласт А - чисто газовый, пласты Б и В - нефтяные. Верхняя часть пласта Б заполнена газом, а снизу нефть подпирается пластовой водой.

Рис.4.Схема нефтегазового месторождения.

Ценность любого месторождения нефти и газа в первую очередь определяется величиной запасов основных полезных ископаемых, которые слагаются из запасов выявленных в его пределах залежей.

Особенности залегания нефти и газа в недрах требуют проведения исследований, направленных на изучение:

1) флюидов основных полезных ископаемых (нефти , газа , конденсата), попутных полезных ископаемых (подземных вод), а также содержащихся в тех и других полезных компонентов;

2) пород-коллекторов в пределах ловушек, пустотное пространство которых служит вместилищем флюидов;

3) условий залегания флюидов в ловушках;

4) основных особенностей залежей, определяющих условия их разработки (режим работы, продуктивность скважин, пластовое давление, дебиты нефти , газа и конденсата, гидропроводность пластов и т. д.);

5) процессов, протекающих в недрах при формировании залежей и их разработке.

ФЛЮИДЫ

Нефть, газ и конденсат представляют собой природные смеси углеводородных и неуглеводородных соединений.

НЕФТЬ - природная смесь, состоящая преимущественно из углеводородных соединений метановой (СпН2п+2), нафтеновой (СпНап) и ароматической (СпН2п-2) групп, которые в пластовых и стандартных условиях находятся в жидкой фазе. Кроме углеводородов (УВ) в нефтях присутствуют сернистые, азотистые, кислородные соединения, металлорганические комплексы. Кислород в нефтях обычно входит в состав нафтеновых и жирных кислот, смол и асфальтенов. К постоянным компонентам нефти относится сера, которая присутствует как в виде различных соединений, так и в свободном состоянии. В большинстве нефтей в пластовых условиях в том или ином количестве содержится растворенный газ.

По составу углеводородной и неуглеводородной частей нефти подразделяются на ряд типов, основными показателями которых являются групповой углеводородный состав, фракционный состав, содержание неуглеводородных компонентов, асфальтенов и смол.

По групповому углеводородному составу (в процентах по массе) выделяются нефти метановые, нафтеновые и ароматические.

Фракционный состав отражает относительное содержание (в процентах по массе) различных фракций нефтей, выкипающих при разгонке до 350° С, и масляных фракций (дистиллятов), выкипающих при температуре выше 350 °С.

Свойства нефтей в стандартных условиях существенно отличаются от их свойств в пластовых условиях вследствие повышенного содержания в них растворенного газа при высоких температуре и давлении в недрах. Для подсчета запасов, рациональной их разработки, первичной подготовки, транспортировки и переработки нефтей свойства их определяются раздельно для этих условий. В стандартных условиях к основным параметрам нефтей относятся плотность, молекулярная масса, вязкость, температура застывания и кипения, а для пластовых условий определяются газосодержание, давление насыщения растворенным газом, объемный коэффициент, коэффициент сжимаемости, коэффициент теплового расширения, плотность и вязкость.

ГАЗЫ - природная смесь углеводородных и неуглеводородных соединений и элементов, находящихся в пластовых условиях в газообразной фазе в виде отдельных скоплений либо в растворенном в нефти или воде состоянии, а в стандартных условиях - только в газообразной фазе. К основным компонентам пластового газа относятся метан и его гомологи - этан, пропан, бутаны. Газ часто содержит сероводород, гелий, оксид углерода, азот и инертные газы, иногда ртуть. Этан при содержании в газе 3 % и более, гелий при концентрации в свободном газе 0,05 % и в растворенном в нефти газе 0,035 %, а также сероводород при содержании 0,5 % (по объему) имеют промышленное значение.

Важнейшие параметры газа - молекулярная масса, плотность в стандартных условиях, относительная плотность по воздуху, среднекритические температура и давление, коэффициент сверхсжимаемости, объемный коэффициент, вязкость, гидратообразование, теплота сгорания.

КОНДЕНСАТ - природная смесь в основном легких углеводородных соединений, находящихся в газе в растворенном состоянии при определенных термобарических условиях и переходящих в жидкую фазу при снижении давления ниже давления конденсации. В стандартных условиях конденсат (стабильный) находится в жидком состоянии и не содержит газообразных УВ. В состав конденсата могут входить сера и парафин. Конденсаты различаются по групповому и фракционному составу. К основным параметрам пластового газа, содержащего конденсат, кроме перечисленных выше, относятся также конденсатно-газовый фактор и давление начала конденсации. Конденсат характеризуется плотностью и вязкостью в стандартных условиях.

ПОДЗЕМНЫЕ (ПЛАСТОВЫЕ) ВОДЫ образуют с залежами нефти и газа единую гидродинамическую систему и служат одним из основных источников пластовой энергии. Подземные воды содержат растворенные соли, ионы, коллоиды и газы . Суммарное содержание в воде растворенных ионов, солей и коллоидов определяет ее основное свойство – минерализацию. Йод, бром, бор, стронций могут содержаться в подземных водах в количествах, позволяющих осуществлять их разработку. Из газов, растворенных в подземных водах, основными считаются СО2, N2, СН4. Для подземных вод определяются также плотность, вязкость, объемный коэффициент, коэффициент сжимаемости, величина поверхностного натяжения.

ПРИРОДНЫЕ РЕЗЕРВУАРЫ

Природным резервуаром (по И.О. Броду) называется природная емкость для нефти , газа и воды, внутри которой они могут циркулировать и форма которой обусловлена соотношением коллектора с вмещающим его (коллектор) плохо проницаемыми породами.

Нефть и газ аккумулируются в пустотном пространстве пород-коллекторов природных резервуаров в пределах ловушек, образуя естественные скопления. Ловушками нефти и газа называются части природных резервуаров, в которых благодаря различного рода структурным дислокациям, стратиграфическому или литологическому ограничению, а также тектоническому экранированию создаются условия для скопления нефти и газа.

Строение природных резервуаров определяется их типом, вещественным составом слагающих их пород, типом пустотного пространства пород-коллекторов и выдержанностью этих пород по площади.

Различают три основных типа резервуаров: пластовые, массивные и литологически ограниченные. Они могут быть сложены породами разного вещественного состава: терригенными, карбонатными, эвапоритовыми, вулканогенными. Особую роль при этом играет и цементирующее вещество породы - коллектора.

Породы - коллекторы разного вещественного состава характеризуются соответствующим типом пустотного пространства - поровым, трещинным, кавернозным, смешанным в разных сочетаниях, что в целом определяет его структуру.

Величина пустотного пространства оценивается в долях единицы следующими коэффициентами:

Пустотность в целом – k п у с т

Пористость – k п

Трещиноватость – k т р

Кавернозность – k к а в

Вторичная трещиноватость – k в т. п у с т

Вторичная кавернозность – k в т. п у ст

Под пустотностью понимаются все виды пустот в породах, образованных порами, кавернами и трещинами:

k п у с т = k п + k т р + k к а в

В поровом коллекторе по сообщаемости пор друг с другом различают пористость общую, открытую, закрытую, оцениваемые соответственно коэффициентами k п общ, k п о, k п з.

k п о б щ = k п о + k п з

Водонасыщенные породы характеризуются коэффициентом водонасыщенности

k в = k в о + k в п,

где k в п – коэффициент подвижной водонасыщенности.

Коэффициентом нефтенасыщенности kн (газонасыщенности kг) называется отношение объема нефти (газа), содержащейся в открытом пустотном пространстве, к суммарному объему пустотного пространства. Часть открытого пустотного пространства в зонах предельного насыщения нефтяных (газовых ) залежей занята остаточной водой. Ее доля в открытом пустотном пространстве оценивается коэффициентом остаточной водонасыщенности kво.

В нефтенасыщенном коллекторе

k в о + k н = 1

Соответственно в газонасыщенном коллекторе

k в о + k г = 1

Если вместе с остаточной водой содержится и остаточная нефть, то

k в о + k г + k н = 1

В переходных зонах доля пустотного пространства, насыщенного водой, возрастает за счет подвижной воды. В этих зонах и ниже ВНК насыщение открытого пустотного пространства водой оценивается коэффициентом водонасыщенности k в.

Соответственно

k в + k н = 1; k в + k г = 1

Минимальные значения параметров, характеризующих насыщение коллекторов нефтью или газом на контакте нефть - газ (газ - вода), названы граничными значениями. В отличие от них минимальные значения параметров продуктивных пластов, характеризующих породу как коллектор, названы кондиционными значениями.

В трещинном коллекторе емкостные свойства коллектора определяются трещиноватостью, обусловленной системой трещин разной раскрытости, протяженности и пространственной ориентации. Система трещин разделяет породу на блоки непроницаемой матрицы, для которых характерны

k п р. б л = 0 и k п. о. э ф б л = 0

В трещинно-каверновом коллекторе отношение k к а в / k т р составляет 5 – 10, возрастая в закарстованных известняках.

По способности пор принимать, содержать и отдавать свободную жидкость или газ выделяют пористость эффективную, оцениваемую коэффициентом

k п о э ф = k п о (1 - k в о),

где k в о – коэффициент остаточной (несжижаемой) водонасыщенности.

Всем продуктивным пластам в той или иной мере свойственна неоднородность, выражающаяся в изменчивости формы залегания и физических свойств коллекторов в пределах рассматриваемого пласта. Неоднородность продуктивного пласта оказывает существенное влияние на распределение запасов нефти и газа и характер фильтрации жидкостей и газа .

Изменчивость формы продуктивного пласта определяется неодинаковой его толщиной (общей и эффективной), расчлененностью, выклиниванием всего пласта и слагающих его пропластков, их литолого-фациальным замещением непроницаемыми разностями, слиянием.

Изменчивость физических свойств продуктивного пласта обусловливается в первую очередь различием его коллекторских свойств: пустотности в целом и ее видов - пористости, трещиноватости, кавернозности. На коллекторские свойства влияют окатанность, отсортированность и упаковка зерен, извилистость и размеры поровых каналов, величина удельной поверхности. Важными свойствами пород - коллекторов являются их плотность и сжимаемость.

УСЛОВИЯ ЗАЛЕГАНИЯ ФЛЮИДОВ В ЗАЛЕЖИ

Любое естественное скопление нефти и газа в ловушке называется залежью.

Газ, нефть и вода в залежи распределяются под воздействием гравитационного фактора, т. е. в зависимости от их плотности. Обычно газ и нефть занимают верхнюю часть ловушки, а вода подпирает их снизу, заполняя всю остальную часть резервуара. Газ и нефть в свою очередь также распределяются под влиянием гравитационного фактора: газ как более легкий располагается над нефтью.

Условия залегания нефти и газа в залежах определяются гипсометрическим положением водонефтяного (ВНК), газоводяного (ГВК) и газонефтяного (ГНК.) контактов; высотой залежи; размерами нефтяной , газовой, водонефтяной, газонефтяной и газоводяной зон, нефтегазонасыщенной толщиной пласта, величинами начальной и остаточной нефтенасыщенности и газонасыщенности пород - коллекторов и их изменением по площади и разрезу; начальными пластовыми давлением и температурой.

ОСНОВНЫЕ ТИПЫ ЗАЛЕЖЕЙ

В зависимости от строения резервуара выделяются следующие основные типы залежей нефти и газа : пластовый (рис. 1); массивный; литологически или стратиграфически ограниченный; тектонически экранированный.

Залежь нефти и газа может быть приурочена к одному изолированному природному резервуару или связана с группой гидродинамически сообщающихся природных резервуаров, в которых отметки газожидкостного и водонефтяного контактов соответственно одинаковы. Во втором случае залежь выделяется как массивная или пластово-массивная.

Рис. 1. Схема пластовой сводовой залежи.

Части пласта: 1 - водяная, 2 - водонефтяная, 3 - нефтяная , 4 - газонефтяная, 5 - газовая; 6 – породы - коллекторы; Н - высота залежи; Нг, Нн - высоты соответственно газовой шапки и нефтяной части залежи

КЛАССИФИКАЦИЯ ЗАЛЕЖЕЙ ПО ФАЗОВОМУ СОСТОЯНИЮ УВ

В зависимости от фазового состояния и основного состава углеводородных соединений в недрах залежи нефти и газа подразделяются на (рис. 2):

- нефтяные , содержащие только нефть, в различной степени насыщенную газом;

Газонефтяные и нефтегазовые (двухфазные); в газонефтяных залежах основная по объему часть нефтяная и меньшая - газовая (газовая шапка); в нефтегазовых - газовая шапка превышает по объему нефтяную часть системы; к нефтегазовым относятся также залежи с крайне незначительной по объему нефтяной частью - нефтяной оторочкой;

Газовые, содержащие только газ

- газоконденсатнонефтяные и нефтегазоконденсатные: в первых - основная по объему нефтяная часть, а во вторых – газоконденсатная (рис. 2).


ОСНОВНЫЕ ОСОБЕННОСТИ, ХАРАКТЕРИЗУЮЩИЕ УСЛОВИЯ РАЗРАБОТКИ ЗАЛЕЖЕЙ

Любая нефтяная или газовая залежь обладает потенциальной энергией, которая в процессе разработки расходуется на вытеснение нефти и газа из резервуара (продуктивного пласта). Вытеснение флюидов из залежи происходит под действием природных сил - носителей пластовой энергии. Такими носителями являются в первую очередь напор краевых вод, а также упругие силы нефти, воды, породы; газа , сжатого в газовых залежах и газовых шапках, и газа, растворенного в нефти . Кроме того, в залежах действует сила тяжести нефти .

Характер проявления движущих сил в пласте, обусловливающих приток флюидов к добывающим скважинам, называется режимом залежи. В соответствии с характером проявления доминирующего источника пластовой энергии в процессе разработки в нефтяных залежах выделяют режимы: водонапорный, упруговодонапорный, газонапорный (газовой шапки), растворенного газа и гравитационный, а в газовых залежах - газовый и упруговодонапорный.

Проявление того или иного режима в залежи обусловлено неоднородностью продуктивного пласта в пределах залежи и вне ее, составом и фазовым состоянием УВ залежи, ее удаленностью от области питания, применяемыми в процессе разработки технологическими решениями. О режимах залежи судят по изменению во времени дебитов нефти , газа и воды, обводненности продукции, пластовых давлений, газовых факторов, по продвижению краевых вод и т. п. Условия разработки залежей определяются также многими другими факторами: фазовыми проницаемостями пород, продуктивностью скважин, гидропроводностью, пьезопроводностью продуктивных пластов, степенью гидрофобизации пород, полнотой вытеснения нефти вытесняющим агентом.

Если на пути движущегося по природному резервуару флюи­да встречается преграда (какой-либо экран или барьер), то начи­нается формирование скопления УВ - залежи, которая занимает определенную часть геологического пространства и является пер­вым (низшим) членом системы нефтегеологического районирова­ния. В качестве простейшего элемента районирования по генети­ческому принципу В.Б. Оленин рассматривал минимальный по размеру участок земной коры, который при этом в силу структур­но-генетической характеристики способен заключать единичную залежь нефти и(или) газа. Большинство отечественных исследо­вателей называют такие участки «ловушками». Ловушка, содержа­щая залежь УВ, является простейшим элементом системы нефте­геологического районирования.

Понятие «ловушка» использовали многие отечественные и зару­бежные ученые (А.А. Бакиров, И.О. Брод, Н.Б. Вассоевич, В.Г. Виль­сон, Н.А. Еремеко, М.К. Калинко, А.И. Леворсен, К.К. Лэйндс и др.). По И.О. Броду, под ловушкой понимается часть природно­го резервуара, в которой создаются условия для улавливания флюидов и формирования нефтегазового скопления, в ней уста­навливается относительное равновесие подвижных веществ. На­личие ловушки - первое условие формирования залежи

Определение ловушки у разных авторов несколько отличает­ся. В.Б. Оленин полагал, что ловушки без наличия в них флюи­дов нельзя уверенно называть ловушками, что только присут­ствие скопления флюидов - залежи определяет ее как таковую. Он дал следующее определение: «Ловушка, в которой присутству­ет залежь нефти и/или газа, представляет собой участок недр, со­стоящий из коллекторов и примыкающих гаюхопроницаемых от­ложений, способный аккумулировать углеводороды в своей кол-лекторской части и заключающий в ее пределах залежь нефти и/или газа». Бывают случаи, когда ловушка возникает вместе с залежью благодаря возникновению коллекторских свойств пород одновременно с нефтеобразованием.

Участки недр, предположительно обладающие указанными свойствами ловушки, но в которых залежи нефти и(или) газа еще не обнаружены, являются возможными нефтегазоносными ловуш-

ками. Каждая ловушка характеризуется суммарным объемом пус­тот коллекторов, который может быть заполнен нефтью или газом. Размер ловушек характеризуется высотой и площадью, которая из­меняется от долей до десятков квадратных километров, а может достигать и гораздо больших (на порядок или два) величин.

В.В. Семенович определяет ловушку как часть природного резервуара, в которой устанавливается равновесие между силами, вызывающими перемещение флюидов (воды, нефти и свободного газа) в породах и препятствующими ему силами. Основные при­чины перемещения - разность давлений и гравитационное всплывания нефти и газа в воде. Противодействие перемещению флюидов оказывает покрышка, экран (в широком смысле флюи-доупор), которым чаше всего являются непроницаемые породы; экран также может создаваться напором воды, разницей давле­ний и др.

Залежь - это скопление углеводородов в ловушке, все части которого гидродинамически связаны. В залежах разделение флю­идов происходит по гравитационному признаку, и если присут­ствуют нефть и газ, то залежь разделяется на газовую и нефтяную части. Залежи в основном подстилаются подошвенной водой. Со­ответственно выделяются и границы раздела: водонефтяной кон­такт (ВНК), газонефтяной контакт (ГНК), газоводяной контакт (ГВК). Пример изображения залежи в плане показан на рис. 7.1. Контакт не представляет собой ровную поверхность, нередко вы­деляется переходная зона, в более крупных каналах которой на­ходится нефть, а более мелкие заполнены водой.

Необходимым условием возникновения залежи является на­личие замкнутого субгоризонтального контура (граница ловуш­ки). Определение этого понятия дано И.О. Бродом и Н.А. Ере­менко. Замкнутый контур рассматривается как линия, ограни­чивающая в плане максимальную возможную площадь залежи. Замкнутый контур представляет собой границу, ниже которой углеводороды не могут удержаться (например, обратный изгиб пласта - «замок»). В вертикальном разрезе замкнутый контур со­ответствует точке пересечения поверхности ловушки (точнее, природного резервуара) и наиболее низкого возможного положе­ния нефте- (или) газоводяного контакта при максимальном за­полнении ловушки (иногда называют выклиниванием или «нуле­вой изопахитой» залежи). Залежь нефти и(или) газа может рас­пространяться во всем объеме резервуара внутри замкнутого кон­тура (см. рис. 7.1) или занимать часть его.

Пример изображения более сложных залежей в антиклиналь­ной ловушке, разбитой на блоки, показан на рис. 7.2. Замкнутые контуры образуются также при пересечении плоской экранирую­щей поверхностью моноклинали с каким-нибудь структурным


осложнением (структурным носом) или если на пути монокли­нально залегающего пластового резервуара возникает экран с изогнутой поверхностью.

Залежи нефти и газа типизируются и классифицируются по разным признакам. Так, по составу флюидов залежи делятся на чисто нефтяные, нефтяные с газовой шапкой, нефтегазовые, газо­вые с нефтяной оторочкой, газоконденсатные, газоконденсатно-нефтяные, чисто газовые и др.



В зависимости от объема нефти и газа, характера насыщения пласта-коллектора, географического положения, глубины необхо­димого для добычи флюидов бурения и других показателей, по которым оценивается рентабельность разработки, залежи подраз­деляются на промышленные и непромышленные.

Наиболее распространенными являются классификации по типу ловушек, многообразие генетических и морфологических типов которых предопределило обилие типов и классов залежей нефти и газа.


Одна из первых подробных характеристик ловушек в России была опубликована И.М. Губкиным. Классификации ловушек, или залежей нефти и газа, заключенных в ловушках различного типа, составлены многими отечественными и зарубежными иссле­дователями (М.В. Абрамович, А.Г. Алексин, А.А Бакиров. И.О. Брод, Н.Б. Вассоевич, И.В. Высоцкий, Г.А. Габриэлянц, М.А. Жданов, НА Еременко, В.М. Завьялов, АЯ. Креме, М.Ф. Мирчинк, В.Я. Рат-нер, А.М. Серегин, Г.А. Хельквист, Н.Ю. Успенская, В.Е. Хаин, М.М. Чарыгин, Ю.М. Васильев, Л.В. Каламкаров, В.Б. Вильсон, А.И. Леворсен, В.Л. Рассел, К.В. Сандерс, В.Б. Херой, К. Хилд и др.).

Наиболее широкое распространение получила классифика­ция ловушек И.О. Брода, в которой в качестве главного признака используется тип природного резервуара. В соответствии с тремя типами природных резервуаров в ней выделяются три основные группы залежей: 1) пластовые, 2) массивные и 3) залежи, литоло-гически ограниченные со всех сторон.

И.О. Брод подчеркивал, что именно по типу природного ре­зервуара, определяющего условия перемещения и дифференциа­ции флюидов, должны выделяться основные группы залежей. Отличительная черта первых двух групп состоит в том, что они образуются в природных резервуарах, имеющих региональное распространение и насыщенных водой на всем их протяжении. Вода заполняет подавляющую часть резервуара и ограничивает залежь нефти и(или) газа, занимающих незначительную часть природного резервуара - ловушку, т.е. вода в этом случае явля­ется ведущим фактором, формирующим залежь. В третьей группе залежей- литологически ограниченных - резервуар со всех сто­рон ограничен непроницаемыми породами, в которых не проис­ходит циркуляции вод и вода может только подстилать залежь в резервуаре, но при этом не создает напор.

1. Группа пластовых залежей согласно условиям формирова­ния ловушки подразделяется на две подгруппы: сводовых (пласто-во-сводовых) залежей и подгруппа залежей экранирования (пласто-во-экранированных) (рис. 7.3, а-д, л, м).

Пластово-сводовые залежи приурочены к ловушкам, пред­ставляющим собой антиклинальный изгиб пласта-резервуара. Формирование таких залежей происходит в результате движения флюидов по пластовому резервуару, ограниченному непроницае­мыми породами в кровле и подошве пласта. Такие залежи рас­пространены очень широко как в платформенных, так и в склад­чатых областях. Они часто бывают разбиты разрывами на блоки (см. рис. 7.2).

Вторая подгруппа - пластово-экранированные залежи, фор­мирование которых может происходить только после того, как Пластовым резервуар был срезан экраном, препятствующим дви-


жению флюидов вверх по восстанию пласта. Экраны могут пред­ставлять собой поверхности тектонических нарушений, стра­тиграфических несогласий и

литологических замещений. В зависи­мости от характера экрана выделяются залежи трех видов экраниро­вания: тектонически экранированные, стратиграфически экраниро­ванные и литологически экранированные (см. рис. 7.3, б, в, г, д).

Тектонически экранированные (дизъюнктивно экранирован­ные) залежи формируются в том случае, если в результате дизъ­юнктивных дислокаций моноклинально залегающий пластовый резервуар приходит в соприкосновение с непроницаемыми поро­дами (см. рис. 7.3, б). По генетической природе экраны могут быть сбросами, взбросами, надвигами и сдвигами. Разрывы явля­ются также и путями миграции флюидов, один и тот же разрыв в разное время может выполнять разные функции - быть проводя­щим каналам в эпоху растяжения и быть экраном при сжатии. Тектонически экранированные залежи присутствуют как в плат­форменных, так и складчатых областях, но в последних они рас­пространены значительно шире. Тектонические нарушения часто разбивают пластово-сводовые залежи. Некоторые исследователи называют подобные комбинированные залежи - пластово-сводо­вые тектонически экранированные (см. рис. 7.3, л). Примеры мес­торождений таких залежей приведены на рис. 7.4, в, г. Сложно по­строенные тектонически экранированные залежи характерны для краевых прогибов. На рис 7.5 приведен схематический разрез Бо-риславского месторождения нефти и газа Предкарпатского проги­ба. Тектоническими экранами являются поверхности пологих над­вигов, характерных для складчатых бортов краевых прогибов. Экранирование соляным штоком рассмотрено И.О. Бродом как частный случай тектонического экранирования, характерный для солянокупольных районов платформенных областей (см. рис. 7.3, в); экранирование жерлом грязевого вулкана (рис. 7.6) также явля­ется разновидностью тектонического экранирования, распростра­ненной в складчатых областях с грязевулканической деятельнос­тью. В.Б. Оленин выделяет два последних случая в качестве самос­тоятельных видов в группе ловушек экранирования.

Стратиграфически экранированные залежи приурочены к ло­вушкам, формирование которых связано с несогласным перекры­тием одной серии пластов плохопроницаемыми породами более молодой серии, т.е. породы пластового резервуара по поверх­ности несогласия контактируют с непроницаемой покрышкой (см. рис. 7.3, г). Обычно залежи формируются в ловушках стра­тиграфического экранирования в случае углового несогласия между контактирующими толщами. В подобных ловушках при приближении к поверхности несогласия, как правило, наблюда­ется улучшение коллекторских свойств природного резервуара,



обусловленное влиянием эрозии в период отсутствия осадкона-копления. Иногда в таких ловушках наблюдается обратная зави­симость - ухудшение коллекторских свойств при приближении к поверхности несогласия в результате заполнения пустот верхней части ловушки минеральным веществом, выпавшим из циркули­ровавших здесь вод. Залежи нефти и газа, экранированные или запечатанные асфальтом, по мнению И.О. Брода, также относят­ся к этому виду залежей, поскольку они сохранились благодаря асфальтовой пробке, образовавшейся вследствие окисления неф­ти в период подъема и эрозии. По времени же формирова­ния они различны. Обычные стратиграфически экранированные ловушки и залежи формируются после перекрытия пласта кол­лектора несогласно залегающей непроницаемой толшей, в то вре­мя как запечатывание асфальтом происходит в период эрозии, т.е. залежь к моменту формирования несогласия, видимо, уже су­ществовала. Залежи, связанные с запечатыванием асфальтом, В.Б. Оленин также выделил в самостоятельный вид в группе ло­вушек экранирования.


Цитологически экранированные залежи приурочены к ловуш­кам, экраном которых служат литологические замещения и вы­клинивания пластов коллекторов. Формирование таких ловушек обусловлено литологическим ограничением коллекторского плас­та природного резервуара в результате его выклинивания или фа-циального замещения одновозрастными плохопроницаемыми от­ложениями. Экранирование такого типа происходит по восста­нию пластов и связано с замещением песчаных пластов глинис­тыми (см. рис. 7.3, д). Закономерной чертой ловушек, возникших за счет замещения коллекторов природного резервуара плохопро­ницаемыми отложениями, является постепенное ухудшение по­ристости и проницаемости коллекторской части по мере непос­редственного приближения к поверхности выклинивания.

Ловушки этого вида возникают в прибрежно-морских толщах в условиях частой смены уровня моря. Классическим примером подобных залежей являются литологически экранированные за­лежи нефти в майкопской толще Предавказья (месторождения Восковая гора, Асфальтовая гора др.).

2. Группа массивных залежей связана с массивными природ­ными резервуарами, ограниченными непроницаемой покрышкой только сверху. Движение флюидов в них происходит преимущест­венно в вертикальном направлении. Отличительная черта массив­ных залежей - гидродинамическая связь всех частей залежи, не­смотря на различие емкостно-фильтрационных свойств и прису­тствие разделов и, соответственно, единство зеркала водо-нефтя-ного или газоводяного контакта в пределах всего выступа (хотя этот признак не является определяющим) (см. рис. 7.3, е, ж, з).

По генезису ловушек массивные залежи делятся на три под­группы: в структурных, эрозионных и биогенных выступах.

Залежи в структурных выступах связаны с ловушками текто­нического происхождения. Структурные выступы представляют собой антиклинальные складки (см. рис. 7.3, е) или структурные выступы горстового характера (рис. 7.7). Массивные залежи, свя­занные с антиклинальными складками, широко распространены, особенно в платформенных областях. Массивные резервуары бы­вают литологически относительно однородные и неоднородные. Первые чаще связаны с карбонатными резервуарами (например, известняки турнейского яруса нижнего карбона Татарии, верхне­го карбона и нижней перми Башкирии, верхняя юра Северного Кавказа, карбонатная формация Асмари бассейна Персидского залива).

Неоднородные массивные резервуары распространены значи­тельно шире, они сложены толщами песчано-глинистых пород с невыдержанными фильтрационно-емкостными свойствами. При наличии окон в глинистых прослоях и их невыдержанности по




простиранию часто возникают условия для сообщаемости и гид­родинамической связи песчаных пластов, т.е. единый массивный резервуар состоит как бы из серии пластовых, но сообщающихся между собой. К резервуарам такого рода приурочены крупнейшие газовые залежи в сеномане севера Западной Сибири (Уренгой­ское, Медвежье, Заполярное, Ямбургское месторождения), а так­же главная залежь в неокоме крупнейшего месторождения нефти в России - Самотлор. Следует отметить, что эти залежи некото­рые исследователи относят к категории пластовых, поскольку се­рия песчаных пластов сеномана ограничена снизу непроницае­мой глинистой пачкой, т.е. по типу резервуара эти залежи плас­товые или сложно-пластовые, а по положению зеркала газоводя­ного контакта - массивные.

Массивные залежи в эрозионных выступах приурочены к вы­ступам палеорельефа, перекрытого в верхней части непроницае­мыми породами (см. рис. 7.3, ж). Независимо от литологическо-го и петрографического состава пород (изверженные, метаморфи­ческие или осадочные породы) слагающих выступ, емкостно-фильтрационные свойства резервуара определяются прежде все­го интенсивностью и длительностью денудационно-эрозионных процессов. Коллекторские свойства таких резервуаров часто ухуд­шаются с глубиной. Подобные залежи широко распространены на юге Западной Сибири, где они приурочены к выступам, сло­женным гранитами, палеозойскими карбонатными и терригенны-ми породами. Обычно это мелкие залежи, хотя известны и круп­ные (Ла-Пас в Венесуэле, Белый Тигр на шельфе Вьетнама).

Массивные залежи в биогенных выступах или рифовых масси­вах распространены достаточно широко. Массивный резервуар этого типа сложен главным образом известняками, в меньшей степени доломитами (см рис. 7.3, з). Структура известняков и всего массива определяется, с одной стороны, рифообразующими организмами - кораллами, мшанками, водорослями, а с дру-


гой - характером его разрушения, накоплением детритусового материала, выщелачиванием, цементацией, перекристаллизацией и др. Интенсивность и взаимосвязь этих процессов обусловливает и емкостно-фильтрационные свойства, которые отличаются боль­шей изменчивостью и невыдержанностью. С рифогенной форма­цией пермского возраста связан ряд залежей на востоке Русской плиты (Ишимбай, Чусовые городки).

3. Группа литологичест ограниченных (со всех сторон) зале­жей приурочена к ловушкам неправильной формы, ограничен­ных со всех сторон непроницаемыми породами. Наиболее рас­пространенными среди них являются залежи в линзовидных пес­чаных телах различной протяженности, находящихся в глинистых нефтематеринских породах; встречаются также линзы проницае­мых пород другого состава, например доломитов в глинистых из­вестняках и др. (см. рис. 7.3, и, к). Залежи этой группы обычно мелкие, толщина продуктивных горизонтов редко превышает первые десятки метров.

И.О. Брод выделил в этой группе три подгруппы: залежи, ограниченные плохопроницаемыми породами, ограниченные водонос­ными породами и залежи, ограниченные частично плохопроницаемы­ми и частично водоносными породами. Первая подгруппа наиболее многочисленна, такие ловушки и залежи, с ними связанные, представляют собой баровые тела, косы, прибрежные валы, палео-русла, например «шнурковые» залежи в майкопской толще Се­верного Кавказа. Две другие подгруппы залежей встречаются крайне редко.

Классификация И.О. Брода получила широкое распростране­ние, выделенные им группы и типы залежей используются и до сих пор, хотя она и вызвала и критику. Так, А.Я. Креме считал, что И.О. Брод дал неправильную принципиальную схему сводовой пластовой залежи, взяв пласт-коллектор малой мощности. Если нарисовать принципиальную схему такой пластовой сводовой за­лежи с пластом-коллектором большой мощности, то получится массивная сводовая пластовая за­лежь (рис. 7.8). Несмотря на то что эта дискуссия происходила более 40 лет назад, этот вопрос не потерял своей актуальности. Дей­ствительно, залежь (см. рис. 7.8) относится к пластовым, так как приурочена к сводовой ловушке пластового резервуара, в то же время по характеру водонефтяно-го контакта эта залежь массив­ная. Для названия подобных за-


лежей используется термин неполнопластовая залежь, или массив­ная пластовая залежь, но последний термин явно неудачен. В ч нем первое определение исключает второе в первоначальных зна­чениях этих терминов. Необходимо отметить, что термин «мас­сивная» использовался И.О. Бродом для залежей, приуроченных к ловушкам в массивных резервуарах, т.е. приуроченных к масси­вам, сложенным главным образом карбонатными и(или) извер­женными и метаморфическими породами. Главными признаками этих залежей являются их ограничение покрышкой только сверху и единое непрерывное зеркало ВНК.В то время еще не были из­вестны гигантские газовые залежи в терригенных толщах мела в Западной Сибири. Поскольку залежи с непрерывными зеркала­ми водонефтяного (ВНК) или газоводяного контактов (ГВК) час­то наблюдаются и в пластовых резервуарах значительной мощ­ности, например в терригенных пластах мела Западной Сибири, то такие залежи можно отнести к неполнопластовым. Если еще учитывать изменение положения ВНК во времени, то критерий непрерывности зеркала ВНК и ГВК нельзя считать вполне опре­деляющим.

Приведенное выше выделение подгрупп проведено по раз­ным признакам: по форме ловушек (например, сводовые), их ге­незису (в биогенных выступах) и по характеру ограничения (ограниченные гаюхопроницаемыми породами и др.). К сожале­нию, ни в одной из известных классификаций залежей этого пол­ностью избежать не удалось, на каком-то уровне происходит сме­шивание признаков деления по форме или генезису.

Классификация ловушек В.Б. Оленина (1977) имеет много общего с классификацией, составленной И.О. Бродом (1951), но отличается принципом деления на едином уровне и составом классификационных категорий. И.О. Брод использовал в качестве главного признака тип природного резервуара, В.Б. Оленин - форму ловушки. Согласно этому признаку, ловушки с нефтью и(или) газом по форме подразделяются на четыре крупные груп­пы: I - изгибы, II - выступы, III - ловушки экранирования, IV - линзы и линзовидные ловушки. Каждая из четырех групп подразделяется по генезису ловушки; всего выделяется 15 видов. Эта классификация более детальная, она существенно дополняет классификацию И.О. Брода, что естественно, так как была созда­на на 25 лет позже, но и она не лишена недостатков. Во-первых, в ней не нашли места массивные залежи в антиклинальных ло­вушках, широко распространенные в природе и заключающие значительную часть запасов нефти и газа. Во-вторых, подразделе­ние видов по генезису ловушки соблюдено не во всех группах. Например, группа III- ловушек экранирования - включает шесть видов: 1) ловушки экранирования по разрыву; 2) ловушки


экранирования по поверхности несогласия; 3) выклинивающиеся ловушки; 4) ловушки экранирования ядром диапира; 5) ловушки экранирования жерлом грязевого вулкана; 6) ловушки запечатыва­ния асфальтом. Все они представляют собой варианты литологи-ческого экранирования, только в некоторых случаях литологичес-кий экран представлен секущим телом иного литологического состава. По сути же ловушки, экранированные ядром диапира и жерлом грязевого вулкана, по генезису не отличаются.

По мнению большинства исследователей, классификация за­лежей нефти и газа должна отражать главные особенности фор­мирования ловушек, с которыми они генетически связаны, при­чем выделение типов, классов и(или) групп внутри типов должно быть проведено по единому принципу. Крупные подразделе­ния, типы или классы выделяются по генетическому признаку, а в пределах генетических типов или классов - по морфологи­ческому. Такие классификации предложены Н.Ю. Успенской, А.Я. Кремсом, А.А. Бакировым и др.

Предлагаемая ниже классификация (табл. 7.1) построена по тому же принципу, только в ней сделана попытка учесть большое число признаков: в основу выделения типов положен генетичес­кий принцип, подтипов - форма ловушек, классов - характер ограничения ловушки и подклассов - форма природного резер­вуара.

По генетическому признаку ловушки, содержащие нефть и газ, подразделяются на два основных типа: I - тектонический, II - седиментационно-стратиграфический. Для I типа залежей ха­рактерно преобладающее влияние тектонического фактора, и скопления нефти и газа обусловлены тектонической (структур­ной) формой ловушки; для II типа главным фактором является нетектонический - литологический, стратиграфический и др. За­лежи нефти и газа этого типа приурочены к ловушкам, сформи­рованным при преобладающей роли седиментационных, постсе-диментационных, эрозионных и других нетектонических процес­сов. При выделении типов подчеркивается преобладающее влия­ние того или иного фактора, поскольку и тектонический, и лито­логический, обусловленный седиментационными и постседимен-тационными процессами, в разной мере воздействуют на форми­рование всех известных в природе ловушек и залежей.

I. Тектонический тип по характеру морфологических струк­тур делится на четыре подтипа: антиклинальный, синклиналь­ный, моноклинальный и блоковый.

Первый - антиклинальный подтип - распространен наибо­лее широко. Ловушки этого подтипа выражены выпуклым изги­бом природных резервуаров. Залежи в них И.О. Брод назвал сво­довыми, по форме антиклинали. По характеру ограничения



ловушки, соответственно и залежи, выделяются четыре класса: 1) сводовые ненарушенные, в которых формирование ловушки и условия для улавливания флюидов обусловлены только антикли­нальным изгибом слоев; такие залежи распространены очень ши­роко в платформенных и складчатых областях, они связаны как с пластовыми, так и с массивными резервуарами; 2) сводовые, нару­шенные разрывами, ограничение ловушки и(или) ловушек обеспе­чивается как антиклинальными изгибами, так и дизъюнктивными нарушениями, обеспечивающими частичное экранирование; част­ным случаем нарушения и экранирования является протыкание складки ядром диапира (соляного или глиняного). Залежи этого класса связаны прежде всего с пластовыми резервуарами, они встречаются и в массивных резервуарах, но значительно реже; 3, 4) - сводовые, осложненные литологическим выклиниванием и поверхностью стратиграфического несогласия, обычно пластовые, возможно также формирование залежей этих двух классов и в массивных резервуарах. Залежи класса 3 характерны для терригенных дельтовых и прибрежно-морских комплексов, накаплива­ющихся в условиях частой смены уровня моря, класса 4 - для погребенных поднятий.

Все четыре класса залежей, связанных с антиклинальными складками, по времени образования могут быть как конседимен-тационными, так и постседиментационными. По генезису анти­клинали сводовые ловушки могут представлять собой складки ре­гионального сдавливания или бокового сжатия, имеющие, как правило, крутые углы наклона крыльев, подвернутые крылья, им свойственна линейность, подобные ловушки распространены в складчатых областях; складки, образованные над разрывом; отра­женные изгибы. Последние гораздо положе изгибов бокового сжатия, они характерны прежде всего для платформенных облас­тей; такие антиклинали возникают в осадочном чехле при пере­крытии погребенных выступов - структур облекания, а также при вертикальных движениях блоков фундамента. С подобными антиклинальными ловушками связаны крупнейшие залежи нефти и газа.

В качестве самостоятельного второго подтипа в тектоничес­ком типе ловушек и залежей выделяются, хотя и крайне немного­численные, синклинальные складки. Такие залежи формируются только в пластовых резервуарах под действием гравитационного фактора при отсутствии в них воды. Нефть, будучи более тяже­лой, чем газы, заполняющие поры породы в пластовом резервуа­ре, скатывается вниз. В ловушках-синклиналях встречена только нефть, образование залежей газа в синклиналях исключено. Ло­вушки, выраженные синклинальными изгибами, могут представ­лять собой только отраженные складки. Над разрывами и ядрами


диапиров синклинальные изгибы не образуются, а в синклиналь­ных изгибах бокового сжатия, свойственных складчатым облас­тям с активным гидрогеологическим режимом, возможность фор­мирования залежей практически отсутствует. Залежи, приурочен­ные к синклинальным ловушкам, известны в Предаппалачском барсейне в Сев. Америке - Биг-Крик, Кэбин-Крик, Грифтисвил и Копли.

Третий подтип тектонического типа - моноклинальный - объ­единяет залежи в ловушках, образованных в результате экраниро­вания моноклинали. И.О. Брод выделил их в качестве подгруппы экранированных в группе пластовых залежей, подразделив на тектонически экранированные, стратиграфически экранирован­ные, литологически экранированные. В рассматриваемой класси­фикации выделенные И.О. Бродом подразделения принимаются в виде классов, соответствующих ограничению ловушки: 6 класс - дизъюнктивно экранированный, 7 - стратиграфически экраниро­ванный, 8 - литологически экранированный. Залежи указанных классов приурочены к пластовым резервуарам, но могут форми­роваться и в массивных (см. табл. 7.1). Условия формирова­ния ловушек этих классов даны при описании классификации И.О. Брода. В природе существует много различных примеров эк­ранирования - соляным штоком, глиняным диапиром, жерлом грязевого вулкана, асфальтовой пробкой, магматическим телом; все указанные виды экранирования попадают в выделенные клас­сы. Так, запечатывание асфальтом может быть частным случаем стратиграфического и(или) литологического экранирования. Ис­ключение составляет экранирование напорной водой, этот вид ограничения ловушки выделен в качестве самостоятельного клас­са 9 - гидродинамически экранированных ловушек и залежей, с ними связанных (см. табл. 7.1). Залежи этого класса немногочис­ленны, установлены только в пластовых резервуарах и изучены недостаточно. Экраном для флюидов является напор вод, проти­востоящий всплыванию нефти и(или) газа вверх по восстанию пласта. Возникновению ловушек и залежей такого типа способ­ствует резкое изменение мощностей пласта-коллектора. Приме­ром подобного экранирования является газовая залежь Восточ-но-Луговского месторождения на Южном Сахалине. По мнению некоторых исследователей, формирование гигантского Даулета-бад-Донмезского газового месторождения в Восточной Туркме­нии также обусловлено гидродинамическим барьером.

Четвертый подтип - блоковый - представляет собой выступы тектонического происхождения - приподнятые блоки пород с различным типом залегания (горизонтальным, моноклинальным и др.). По характеру ограничения ему соответствует класс 10 - тектонически ограниченных со всех сторон ловушек и залежей, к


ним приуроченных. Помимо тектонического ограничения подоб­ные ловушки могут быть осложнены литологическим или стра­тиграфическим экранированием. Залежи этого типа могут фор­мироваться как в пластовом резервуаре, так и в массивном (см. табл. 7.1). В первом случае залежь возникнет, если пласт-ре­зервуар находится в материнской толще, второй, более распрост­раненный, - массивная залежь образуется по стандартной схеме, т.е. за счет вертикальной миграции.

II тип ловушек и залежей, с ними связанных, - седимента-ционно-стратиграфический. Он охватывает все многообразие объ­ектов, в генезисе которых тектонические процессы не играли гла­венствующей роли, а их формирование обусловлено седимента-ционными, постседиментационными и денудационными процес­сами. По форме ловушек этот тип подразделяется на два подтипа: выступы и линзы.

В ловушках первого подтипа - выступах - формируются только массивные залежи. Этот подтип объединяет два класса ло­вушек: 11 - биогенные выступы с литологическим экранированием залежи и 12 - эрозионные выступы со стратиграфическим ограни­чением. Ловушки, представленные структурными элементами ука­занного типа, выделены и названы И.О. Бродом (1951).

Биогенные выступы, представляющие собой рифовые масси­вы как одиночные, так и цепочку или группу рифов; в плане они имеют относительно правильную форму. Коллекторские свойства рифовых массивов резко меняются, наилучшие емкостно-фильт­рационные параметры характерны, как правило, не для вершины рифового массива, а для расположенной ниже зернисто-обломоч-ной зоны, формирующейся на склоне рифа, обращенном в от­крытое море. Рифовые массивы различны по размерам - от пер­вых десятков метров до очень крупных, высотой более 1 км (на­пример, Карачаганакский риф на северном борту Прикаспийской впадины) (рис. 7.9). Рифовые массивы часто перекрыты галоген-но-сульфатными породами, представляющими наиболее совер­шенные покрышки. Рифовые постройки обычно формируются на бровке шельфа. Поиски и обнаружение новых биогенных масси­вов и связанных с ними массивных залежей - перспективное на­правление нефтепоисковых работ ближайшего будущего.

Класс ловушек выступов со стратиграфическим ограничени­ем - эрозионные выступы - приурочен к выступам фундамента, формирование которых связано с эрозионными процессами. Емкостные и фильтрационные свойства резервуаров такого ти­па обусловлены интенсивностью и длительностью воздействия гипергенетических процессов, протекающих главным образом в аэробных условиях (идиогипергенез), хотя возможно и участие анаэробных процессов (криптогипергенез). В эрозионных высту-



пах коллекторские свойства в общем ухудшаются вглубь от по­верхности размыва. В отдельных случаях помимо процессов вы­ветривания в формировании коллекторских свойств массива при­нимают участие и эндогенные гидротермальные процессы. Это прежде всего касается массивов изверженных пород. Характер­ным примером подобной ловушки является залежь в гранитном массиве месторождения Белый Тигр (шельф Вьетнама), где ем­костные свойства имеют явно полигенную природу и не наблю­дается закономерного снижения емкости с глубиной.

Второй подкласс ловушек и залежей, с ними связанных, се-диментационно-стратиграфического типа - линзовидные тела. По характеру ограничения они делятся на три класса линз: 13 - литологического ограничения (седиментационные), 14 - текс­турно-структурного ограничения (катагенетические), 15 - ограни­ченные водой - гидравлические. В ловушках этого подтипа форми­руются залежи только в резервуарах, ограниченных со всех сто­рон (см. табл. 7.1). Ловушки этого подтипа - линз и линзовид-ных ловушек - Н.Ю. Успенская (1955) именовала литологически замкнутыми, а И.О. Брод (1951) - литологически ограниченны­ми (см. рис. 7.3, и, к).

Класс 13 - литологически ограниченных ловушек и зале­жей - наиболее распространенный, объединяет замкнутые тела определенного состава, ограниченные со всех сторон шюхопро-ницаемыми породами или находящиеся в толще иного литологи­ческого состава; прежде всего песчаные тела различной формы, приуроченные к глинистым НМ-толщам. Генезис таких песчаных тел различен: русловые, дельтовые, прибрежные аккумулятивные тела - бары, косы, дюны, глубоководные конусы выноса, т.е. первичные седиментационные линзы. Типичный пример - так называемые шнурковые залежи в майкопской толще Предкав­казья, резервуарами для которых служат захороненные русловые речные отложения. Реже встречаются первичные седиментацион­ные линзы, связанные с карбонатными породами. Это обычно некрупные залежи, но известны и исключения, например круп­ное газовое месторождение Картидж (северный борт бассейна Мексиканского залива); продуктивны оолитовые известняки ни­жнего мела, образующие линзу в песчано-известняковой толще.

Класс 14 - линзы текстурно-структурного ограничения - объ­единяет тела, обособление которых связано с изменением тек­стурных или структурных признаков без существенного измене­ния вещественного состава, обусловленные главным образом ка-тагенетическими процессами. Гораздо шире распространены вто­ричные ловушки - постседиментационные линзы, названные катагенетическими ловушками, к которым относятся и линзы тре-щиноватости. Формирование коллекторских свойств и соответ-


ственно ловушек происходит в результате перекристаллизации, выщелачивания, цементации, разуплотнения, обусловленных процессами трансформации минерального вещества, генерации флюидов, неравновесного уплотнения и т.д., они могут формиро­ваться в толщах различного литологического состава - карбонат­ных, кремнистых, глинистых, реже терригенных, а чаще толщах смешанного состава.

Термин «катагенетическая ловушка» был предложен Н.Б. Вас-соевичем. Подобные ловушки рассматривались многими иссле­дователями (М.В. Абрамович, Г.А. Габриэлянц, Л.Д. Виноградов, А.И. Леворсен, Г. Риттенхаус и др.), которые называли их по-раз­ному: эпигенетические, диагенетические, ловушки запечатыва­ния. Последний термин употреблялся для ловушек, полная изо­ляция которых происходила уже после формирования залежи. Первичная залежь в подобных ловушках формировалась в обыч­ном резервуаре в традиционном коллекторе; такие ловушки не следует именовать катагенетическими. А.И. Леворсен, а затем Г. Риттенхаус, рассматривая класс диагенетических ловушек, под­разделили их на два подкласса: 1) ловушки, возникающие за счет трансформации коллектора в неколлектор, 2) за счет преобразо­вания неколлектора в коллектор. По-видимому, именно ловушки этого подкласса, в которых формирование коллектора также об­условлено катагенетическими процессами, следует относить к ка-тагенетическим. Залежи нефти и газа, приуроченные к подобным ловушкам, связаны прежде всего с так называемыми сланцевы­ми толщами. Они сложены кремнисто-глинистыми, карбонат-но-кремнисто-глинистыми образованиями с повышенными кон­центрациями ОВ. Типичным примером катагенетической ловуш­ки в кремнистой толще является залежь месторождения Лост Хилс в бассейне Сан-Хоакин (Запад США). На периклинали складки пористые диатомиты замещаются глинистыми диатоми­тами с резко ухудшенными коллекторскими свойствами. Возник­новение ловушки в данном случае обусловлено различной мик­роструктурой, формирование которой контролируется уровнем преобразованности участков толщи с различной кремнистостью. Другим примером таких ловушек являются участки повышенной кремнистости, характеризующиеся высокой трещиноватостью в менее кремнистых и менее трещинных, относительно непроница­емых зонах. Ограничение подобной ловушки - потеря трещино-ватости. В пределах каждого крупного изостадиального уровня формирование катагенетических ловушек определяется неравно­мерностью вторичных преобразований в толщах в зависимости от соотношения и характера распределения глинистой, кремнистой и углеродистой составляющих. Предпосылки же возникновения катагенетических ловушек закладываются в седиментогенезе -


неравномерность распределения карбонатного, кремнистого ма­териала и ОВ.

Класс 15 - ловушки, ограниченные водой, или гидравлические, крайне редки. Залежь в подобных ловушках может существовать в случае, если силы гравитации слабее капиллярных. Это проис­ходит в том случае, если нефть находится в линзах песчаных пород с высокой проницаемостью, окруженных породами с худ­шими коллекторскими свойствами, но и насыщенными водой. В качестве примера таких залежей, приуроченных к линзам круп­нозернистого песка в тонкозернистом водоносном песчанике, И.О. Брод приводит «стофутовый песчаник» нижнего карбона в Аппалачском бассейне США.

Других примеров залежей подобного типа в литературе не встречено, хотя наличие их вполне возможно. Примером сущест­вования скоплений нефти, окруженных водой, являются так на­зываемые «целики», образующиеся в результате обводнения зале­жи и разделения ее на отдельные линзы, окруженные со всех сто­рон водой. Они могут возникать при чрезвычайно интенсивном отборе нефти в невысоких залежах большой площади.

Основная часть всех известных залежей приурочена к анти­клинальным сводовым ловушкам, и подавляющее число их уже обнаружено по крайней мере в бассейнах континентов. Перспек­тива открытия новых залежей, в том числе и крупных, связана с неантиклинальными ловушками, прежде всего с теми, которые труднее всего обнаруживать, - катагенетическими и седимента-ционными линзами.

Все рассмотренные выше классы ловушек и залежей, за ис­ключением катагенетических, выделялись ранее разными иссле­дователями в качестве самостоятельных классификационных ка­тегорий под сходными или несколько отличными названиями. Опубликовано большое количество работ с детальной характерис­тикой ловушек разных классов, примеры залежей разных классов рассматриваются и при характеристике месторождений.

Детальная классификация нетектонических ловушек, т.е. се-диментационно-стратиграфических, согласно приведенной выше классификации, была разработана Г.А. Габриэлянцем (2000) В ее основу положены условия формирования ловушек (табл. 7.2). Согласно этой классификации неантиклинальные ловушки под­разделяются на две группы: литологические и стратиграфические. Далее каждая группа подразделяется по процессам, формирую­щим ловушку, которые объединены в две крупные группы: седи-ментационные и постседиментационные. В классификации, на­пример, выделяются диагенетические и эпигенетические ловуш­ки, которые в общем соответствуют катагенетическим (структур­но-текстурное ограничение) ловушкам классификации авторов