Выводы для реакторов на быстрых нейтронах. Ядерные реакторы на медленных и быстрых нейтронах

Наибольшее распространение сегодня получили водно-водяные и кипящие тепловые реакторы. Состав ОЯТ различных реакторов несколько различается. Он зависит, в частности от выгорания, но не только. В типичном реакторе типа ВВЭР электрической мощностью 1000 МВт при использовании уранового топлива ежегодно образуется 21 т отработавшего ядерного топлива (ОЯТ) объемом 11 м 3 (1/3 общей загрузки топлива). В 1 т ОЯТ, только что извлеченного из реактора типа ВВЭР, содержится 950- 980 кг урана-235 и 238, 5 - 10 кг плутония, продуктов деления (1.2 - 1.5 кг цезия-137, 770 г технеция-90, 500 г стронция-90, 200 г иода-129, 12 - 15 г самария-151), минорных актинидов (500 г нептуния-237, 120 - 350 г америция-241 и 243, 60 г кюрия-242 и 244), а также в меньшем количестве радиоизотопы селена, циркония, палладия, олова и других элементов. При использовании МОХ-топлива в ОЯТ будет больше америция и кюрия.

Продукты деления

В течении первых десяти лет тепловыделение ОЯТ после выгрузки падает приблизительно на два порядка и определяется в основном продуктами деления. Наибольший вклад в активность отработавшего топлива с трехлетним временем выдержки вносят: 137 Cs + 137m Ba (24%), 144 Ce + 144 Pr (21%), 90 Sr + 90 Y (18%), 106 Ru + 106 Rh (16%), 147 Pm (10%), 134 Cs (7%), относительный вклад 85 Kr, 154 Eu, 155 Eu равен приблизительно 1% от каждого изотопа.

Короткоживущие продукты деления

Нуклид Т 1/2 Нуклид Т 1/2
85 Kr 10.8года 137 Cs 26.6 года
90 Sr 29 лет 137m Ba 156 сут
90 Y 2.6 сут 144 Ce 284.91 сут
106 Ru 371.8 сут 144 Pr 17.28 м
106 Rh 30.07 с 147 Pm 2.6 года
134 Cs 2.3 года 154 Eu 8.8 года
155 Eu 4.753 года

В течение нескольких лет после выгрузки, в то время как отработавшее топливо хранится в водонаполненных бассейнах, основной риск состоит в том, что потеря охлаждающей воды может привести к нагреву топлива до температуры, достаточно высокой, чтобы воспламенить циркониевый сплав из которого изготавливаются ТВЭЛы, что приведет к выбросу летучих радиоактивных продуктов деления.

Долгоживущие продукты деления

В долгосрочном плане (10 4 -10 6 лет) эти продукты могут представлять опасность из-за своей большей, чем у актинидов мобильности.

Актиниды

К минорным актиноидам относятся долгоживущие и относительно долгоживущие изотопы нептуния (Np-237), америция (Am-241, Am-243) и кюрия (Cm-242, Cm-244, Cm-245).

Нептуний

Нептуний, который преимущественно представлен единственным изотопом Np-237 нарабатывается на изотопе урана U-235 по следующей цепочке:

Схема его распада до ближайшего долгоживущего дочернего ядра имеет вид

Np-237 (T 1/2 = 2.14·10 6 лет; α) → Pa-233 (T 1/2 = 27 суток; β) → U-233 (T 1/2 = 1.59·10 5 лет; α)

Анализируя динамику изменения активностей ядер в цепочке распадов, можно сказать, что Np-237 и Ра-233 будут находиться в вековом равновесии и их активности будут равны, а активность Ра-233 будет очень мала и ее можно не учитывать.

Радиационные характеристики Np-237 и Ра-233

C 0 – удельная активность материала в расчете на 1 кг Np-237 (Ки/кг); Q – энергия распада (МэВ);
E α – энергия α-частиц (МэВ); E β – средняя энергия β-частиц (МэВ);
E γ – общая энергия γ-квантов (кэВ); W – тепловыделение (Вт/кг).

Нептуний, который преимущественно представлен единственным изотопом Np-237, вносит значительным вклад в долгосрочную радиотоксичность из-за его большого периода полураспада. Однако Np-237 не вносят существенного вклада в тепловыделение. Np-237 может быть трансмутирован как в тепловых, так и в быстрых реакторах.

Америций

К долгоживущим изотопам америция, нарабатываемым в значимых количествах в реакторах на тепловых нейтронах, относятся изотопы Аm-241 и Am-243. Изотоп Аm-242m нарабатывается в существенно меньших количествах, однако его содержание в америции, выделяемом из ОЯТ, может оказывать значительное влияние на характеристики нейтронного излучения материала.
Изотопы америция Am-241, Am-243 и изотопы кюрия Cm-242, Cm-244 и Cm-245 нарабатываются на изотопе урана U-238 по следующим цепочкам:



Am-241
В ОЯТ Am-241 является доминирующим изотопов америция, хотя там есть также Am-242, Am-242m и Am-243.
Схема распада Am-241 до ближайшего долгоживущего дочернего ядра имеет вид

Am-241 (T 1/2 = 4.32·10 2 лет; α) → Np-237 (T 1/2 = 2.14·10 6 лет; α)

Так как T 1/2 (Am-241) << T 1/2 (Np-237), то радиационные характеристики процесса определяются исключительно параметрами распада собственно Аm-241

Am-243
Схема распада Am-243 до ближайшего долгоживущего дочернего ядра имеет вид

Am-243 (T 1/2 = 7.38·10 3 лет; α) → Np-239 (T 1/2 = 2.35 суток; β) →Pu-239 (T 1/2 = 2.42·10 4 лет; α)

Am-243 и Np-239 находятся в радиационном равновесии и их активности равны.

Am-242m
В реакторах на тепловых нейтронах нарабатывается также долгоживущий изомер Am-242m

Am-242m (T 1/2 = 1.52·10 2 лет; γ) → Am-242 (T 1/2 = 16 часов; 82% β ; 18% ЭЗ*) →
→ Pu-242 (T 1/2 = 3.76·10 5 лет; α) → Cm-242 (T 1/2 = 1.63·10 2 суток; α) → Pu-238 (T 1/2 = 88 лет; α)

В радиоактивность материала, содержащего Am-242m, дают вклад следующие радионуклиды:
Am-242m, Am-242, Cm-242

Радиационные характеристики Аm-241, Am-243, Np-239, Am-242m, Am-242 и Cm-242

Изотоп T 1/2 C 0 Тип
распада
Q E α E β E γ W
Am-241 4.32·10 2 лет 3.44·10 3 α 5.64 5.48 29 1.11·10 2
Am-243 7.38·10 3 лет 200 α 5.44 5.27 0 48 6.6
Np-239 2.35 суток β 0.72 0 0.118 175
Am-242m 1.52·10 2 лет 9.75·10 3 γ 0.072 0 0 49 310
Am-242 16 часов 1.75·10 3
8·10 3
ЭЗ
β
0.75, 17.3%
0.66, 82.7%
0
0
0
0.16
18
Cm-242 1.63·10 2 суток 8·10 3 α 6.2 6.1 0 1.8

Америций является основным вкладчиком гамма-активности и радиотоксичности ОЯТ прилизительно через 500 лет после выгрузки, когда вклад продуктов деления уменьшается на на несколько порядков. Весь америций поддается трансмутации в интенсивном потоке нейтронов помощью реакций захвата и деления.

Кюрий

Cm-242
Схема распада Cm-242 имеет вид:

Сm-242 (Т 1/2 = 163 суток; α) → Pu-238 (Т 1/2 = 87.7 лет; α) → U-234 (Т 1/2 = 2.46·10 5 лет; α)

Активность Сm-242 быстро спадает, при этом активность Pu-238 увеличивается и, довольно быстро, за ≈ 3.4 года, активности Pu-238 и Сm-242 сравниваются при этом активность Cm-242 уменьшается приблизительно в 200 раз по сравнению с первоначальным уровнем.

Радиационные характеристики Сm-242 и Pu-238

Сm-244
Схема распада Сm-244 имеет вид:

Сm-244 (Т 1/2 = 18.1 лет; α) → Pu-240 (Т 1/2 = 6.56·10 3 лет; α).

Радиационные характеристики Сm-244

Сm-245
Схема распада Сm-245 имеет вид:

Сm-245 (Т 1/2 = 8.5·10 3 лет; α) → Pu-241 (Т 1/2 = 14.4 лет; β) → Am-241 (Т 1/2 = 4.33·10 2 лет; α).

При t >> Т 1/2 (Pu-241) активность Pu-241 находится в равновесии с активностью Cm-245.

Радиационные характеристики Cm-245 и Pu-241

Кюрий вносит значительный вклад в гамма-активность, нейтронное излучение и радиотоксичность. Кюрий плохо подходит для трансмутации, поскольку сечения деления и захвата основных изотопов (Cm-242 и Cm-244) довольно малы. Хотя Cm-242 имеет очень короткий период полураспада (163 дней), он постоянно генерируется в облученном топливе в результате распада
Am-242m (период полураспада 141 год).

Тепловыделение и радиотоксичность ОЯТ


Рис. 3. Тепловыделение отработавшего топлива легководного реактора с выгоранием 50 ГВт·дн/ттм

На рис. 3 показана тепловыделение отработавшего топлива легководного реактора с выгоранием 50 ГВт·д/ттм. Выгорание определяется как отношение выработанной тепловой энергии за время кампании реактора к массе загруженного топлива. После хранения в течение примерно 40 лет в отработавшем топливе остается лишь несколько процентов от исходной радиоактивности. Тепловыделение быстро падает в течение первых 200 лет после выгрузки. Причем первые 60 лет основной вклад в тепловыделение вносит распад продуктов деления. Наибольший вклад вносят 137 Cs + 137 Ba и 90 Sr + 90 Y. Несмотря на то, что минорные актиниды в реакторах производятся в относительно небольших количествах, они вносят существенный вклад в тепловыделение, выход нейтронов и радиотоксичность ОЯТ. Через 60 лет в величине тепловыделения превалируют актиниды. После 200 лет тепловыделение почти полностью вызвано актинидами − плутонием и америцием. Медленное снижение тепловыделения обусловлена относительно большими периодами полураспадов 241 Am, 238 Pu, 239 Pu и 240 Pu.
На рис. 4 показано как изменяется со временем мощность дозы внешнего облучения от ОЯТ.


Рис. 4. Зависимость от времени мощности дозы излучения от одной тонны отработавшего ядерного топлива после выгрузки из реактора с выгоранием 38 Гвтּ дн/т на расстоянии 1 метра.

Примерно через год после загрузки топлива, когда ОЯТ выгружается из реактора, мощность дозы от 1 т составляет около 1000 Зв/ч. Это означает, что смертельная доза, около 5 Зв, принимается примерно за 20 секунд. Доза полностью полностью зависит от вклада гамма излучения. Излучение уменьшается со временем, но мощность дозы после 40 лет, когда отработавшее топливо должно быть размещено в глубоком хранилище, по-прежнему высока − 65 Зв/ч. Поэтому при обращении с отработавшим ядерным топливом требуются защитные меры против внешнего облучения, от выгрузки из реактора до окончательного захоронения. Из рис. 4 видно, что доза от нейтронного излучения всегда много меньше, чем от гамма-излучения, но нейтронное излучение снижается медленнее.
В течение первых нескольких десятилетий радиотоксичность в основном определяется такими продуктами деления как 90 Sn и 137 Cs и продуктами их распада. После промежуточного хранения в течение примерно 40 лет в отработавшем топливе остается только несколько процентов от первоначальной радиоактивности. В течение нескольких сотен лет большинство радионуклидов распадается и основной вклад в радиотоксичность вносят долгоживущие актиниды (плутоний и америций). Радиотоксичность ОЯТ снизится до уровня радиотоксичности урановой руды примерно через 100 000 лет.


Рис. 5. Зависимость от времени радиотоксичности ОЯТ при выгорании 60 Гвтּ дн/т.

В 40 км от Екатеринбурга, посреди красивейших уральских лесов расположен городок Заречный. В 1964 году здесь была запущена первая советская промышленная АЭС — Белоярская(с реактором АМБ-100 мощностью 100 МВт). Сейчас Белоярская АЭС осталась единственной в мире, где работает промышленный энергетический реактор на быстрых нейтронах — БН-600.

Представьте себе кипятильник, который испаряет воду, а образовавшийся пар крутит турбогенератор, вырабатывающий электроэнергию. Примерно так в общих чертах и устроена атомная электростанция. Только «кипятильник» — это энергия атомного распада. Конструкции энергетических реакторов могут быть различными, но по принципу работы их можно разделить на две группы — реакторы на тепловых нейтронах и реакторы на быстрых нейтронах.

В основе любого реактора лежит деление тяжелых ядер под действием нейтронов. Правда, есть и существенные отличия. В тепловых реакторах уран-235 делится под действием низкоэнергетических тепловых нейтронов, при этом образуются осколки деления и новые нейтроны, имеющие высокую энергию (так называемые быстрые нейтроны). Вероятность поглощения ядром урана-235 (с последующим делением) теплового нейтрона гораздо выше, чем быстрого, поэтому нейтроны нужно замедлить. Это делается с помощью замедлителей- веществ, при столкновениях с ядрами которых нейтроны теряют энергию. Топливом для тепловых реакторов обычно служит уран невысокого обогащения, в качестве замедлителя используются графит, легкая или тяжелая вода, а теплоносителем является обычная вода. По одной из таких схем устроены большинство функционирующих АЭС.


Быстрые нейтроны, образующиеся в результате вынужденного деления ядер, можно использовать и без какого-либо замедления. Схема такова: быстрые нейтроны, образовавшиеся при делении ядер урана-235 или плутония-239, поглощаются ураном-238 с образованием (после двух бета-распадов) плутония-239. Причем на 100 разделившихся ядер урана-235 или плутония-239 образуется 120−140 ядер плутония-239. Правда, поскольку вероятность деления ядер быстрыми нейтронами меньше, чем тепловыми, топливо должно быть обогащенным в большей степени, чем для тепловых реакторов. Кроме того, отводить тепло с помощью воды здесь нельзя (вода- замедлитель), так что приходится использовать другие теплоносители: обычно это жидкие металлы и сплавы, от весьма экзотических вариантов типа ртути (такой теплоноситель был использован в первом американском экспериментальном реакторе Clementine) или свинцово-висмутовых сплавов (использовались в некоторых реакторах для подводных лодок- в частности, советских лодок проекта 705) до жидкого натрия (самый распространенный в промышленных энергетических реакторах вариант). Реакторы, работающие по такой схеме, называются реакторами на быстрых нейтронах. Идея такого реактора была предложена в 1942 году Энрико Ферми. Разумеется, самый горячий интерес проявили к этой схеме военные: быстрые реакторы в процессе работы вырабатывают не только энергию, но и плутоний для ядерного оружия. По этой причине реакторы на быстрых нейтронах называют также бридерами (от английского breeder- производитель).

Что у него внутри

Активная зона реактора на быстрых нейтронах устроена подобно луковице, слоями. 370 топливных сборок образуют три зоны с различным обогащением по урану-235 — 17, 21 и 26% (изначально зон было только две, но чтобы выровнять энерговыделение, сделали три). Они окружены боковыми экранами (бланкетами), или зонами воспроизводства, где расположены сборки, содержащие обедненный или природный уран, состоящий в основном из изотопа 238. В торцах ТВЭЛов выше и ниже активной зоны также расположены таблетки из обедненного урана, которые образуют торцевые экраны (зоны воспроизводства). Реактор БН-600 относится к размножителям (бридерам), то есть на 100 разделившихся в активной зоне ядер урана-235 в боковых и торцевых экранах нарабатывается 120−140 ядер плутония, что дает возможность расширенного воспроизводства ядерного топлива. Тепловыделяющие сборки (ТВС) представляют собой собранный в одном корпусе набор тепловыделяющих элементов (ТВЭЛов) — трубочек из специальной стали, наполненных таблетками из оксида урана с различным обогащением. Чтобы ТВЭЛы не соприкасались между собой и между ними мог циркулировать теплоноситель, на трубочки навивают тонкую проволоку. Натрий поступает в ТВС через нижние дросселирующие отверстия и выходит через окна в верхней части. В нижней части ТВС расположен хвостовик, вставляемый в гнездо коллектора, в верхней — головная часть, за которую сборку захватывают при перегрузке. Топливные сборки различного обогащения имеют различные посадочные места, поэтому установить сборку на неправильное место просто невозможно. Для управления реактором используются 19 компенсирующих стержней, содержащих бор (поглотитель нейтронов) для компенсации выгорания топлива, 2 стержня автоматического регулирования (для поддержания заданной мощности), а также 6 стержней активной защиты. Поскольку собственный нейтронный фон у урана мал, для контролируемого запуска реактора (и управления на малых уровнях мощности) используется «подсветка» — фотонейтронный источник (гамма-излучатель плюс бериллий).

Зигзаги истории

Интересно, что история мировой атомной энергетики началась именно с реактора на быстрых нейтронах. 20 декабря 1951 года в Айдахо заработал первый в мире энергетический реактор на быстрых нейтронах EBR-I (Experimental Breeder Reactor) электрической мощностью всего 0,2 МВт. Позднее, в 1963 году, недалеко от Детройта была запущена АЭС с реактором на быстрых нейтронах Fermi — уже мощностью около 100 МВт (в 1966 году там произошла серьезная авария с расплавлением части активной зоны, но без каких-либо последствий для окружающей среды или людей).

В СССР этой темой с конца 1940-х годов занимался Александр Лейпунский, под руководством которого в Обнинском физико-энергетическом институте (ФЭИ) были разработаны основы теории быстрых реакторов и построены несколько экспериментальных стендов, что позволило изучить физику процесса. В результате проведенных исследований в 1972 году вступила в строй первая советская АЭС на быстрых нейтронах в городе Шевченко (ныне Актау, Казахстан) с реактором БН-350 (изначально обозначался БН-250). Она не только вырабатывала электроэнергию, но и использовала тепло для опреснения воды. Вскоре были запущены французская АЭС с быстрым реактором Phenix (1973) и британская с PFR (1974), обе мощностью 250 МВт.


Однако в 1970-х в атомной энергетике стали доминировать реакторы на тепловых нейтронах. Обусловлено это было различными причинами. Например, тем, что быстрые реакторы могут вырабатывать плутоний, а значит, это может привести к нарушению закона о нераспространении ядерного оружия. Однако скорее всего основным фактором было то, что тепловые реакторы были более простыми и дешевыми, их конструкция отрабатывалась на военных реакторах для подводных лодок, да и сам уран был очень дешев. Вступившие в строй после 1980 года промышленные энергетические реакторы на быстрых нейтронах во всем мире можно пересчитать по пальцам одной руки: это Superphenix (Франция, 1985−1997), Monju (Япония, 1994−1995) и БН-600 (Белоярская АЭС, 1980), который в настоящий момент является единственным в мире действующим промышленным энергетическим реактором.

Они возвращаются

Однако в настоящее время к АЭС с реакторами на быстрых нейтронах вновь приковано внимание специалистов и общественности. Согласно оценкам, сделанным Международным агентством по атомной энергии (МАГАТЭ) в 2005 году, общий объем разведанных запасов урана, расходы на добычу которого не превышают $130 за килограмм, составляет примерно 4,7 млн тонн. Согласно оценкам МАГАТЭ, этих запасов хватит на 85 лет (если взять за основу потребность в уране для производства электроэнергии по уровню 2004 года). Содержание изотопа 235, который «сжигают» в тепловых реакторах, в природном уране — всего 0,72%, остальное составляет «бесполезный» для тепловых реакторов уран-238. Однако, если перейти к использованию реакторов на быстрых нейтронах, способных «сжигать» уран-238, этих же запасов хватит более чем на 2500 лет!


Цех сборки реактора, где из отдельных деталей методом крупноузловой сборки собирают отдельные части реактора

Более того, реакторы на быстрых нейтронах позволяют реализовать замкнутый топливный цикл (в БН-600 в настоящее время он не реализован). Поскольку «сжигается» только уран-238, после переработки (извлечения продуктов деления и добавления новых порций урана-238) топливо можно вновь загружать в реактор. А поскольку в уран-плутониевом цикле плутония образуется больше, чем распалось, излишек топлива можно использовать для новых реакторов.

Более того, этим способом можно перерабатывать излишки оружейного плутония, а также плутоний и младшие актиниды (нептуний, америций, кюрий), извлеченные из отработавшего топлива обычных тепловых реакторов (младшие актиниды в настоящее время представляют собой весьма опасную часть радиоактивных отходов). При этом количество радиоактивных отходов по сравнению с тепловыми реакторами уменьшается более чем в двадцать раз.

Перезагрузка вслепую

В отличие от тепловых реакторов, в реакторе БН-600 сборки находятся под слоем жидкого натрия, поэтому извлечение отработавших сборок и установка на их место свежих (этот процесс называют перегрузкой) происходит в полностью закрытом режиме. В верхней части реактора расположены большая и малая поворотная пробки (эксцентричные относительно друг друга, то есть их оси вращения не совпадают). На малой поворотной пробке смонтирована колонна с системами управления и защиты, а также механизмом перегрузки с захватом типа цангового. Поворотный механизм снабжен «гидрозатвором» из специального легкоплавкого сплава. В нормальном состоянии он твердый, а для перезагрузки его разогревают до температуры плавления, при этом реактор остается полностью герметичным, так что выбросы радиоактивных газов практически исключены. Процесс перегрузки выключает множество этапов. Сначала захват подводится к одной из сборок, находящихся во внутриреакторном хранилище отработанных сборок, извлекает ее и переносит в элеватор выгрузки. Затем ее поднимают в передаточный бокс и помещают в барабан отработавших сборок, откуда она после очистки паром (от натрия) попадет в бассейн выдержки. На следующем этапе механизм извлекает одну из сборок активной зоны и переставляет ее во внутриреакторное хранилище. После этого из барабана свежих сборок (в который заранее устанавливают ТВСы, пришедшие с завода) извлекают нужную, устанавливают ее в элеватор свежих сборок, который подает ее к механизму перегрузки. Последний этап — установка ТВС в освободившуюся ячейку. При этом на работу механизма в целях безопасности накладываются определенные ограничения: например, нельзя одновременно освобождать две соседние ячейки, кроме того, при перегрузке все стержни управления и защиты должны находиться в активной зоне. Процесс перегрузки одной сборки занимает до часа, перегрузка трети активной зоны (около 120 ТВС) занимает около недели (в три смены), такая процедура выполняется каждую микрокампанию (160 эффективных суток, в пересчете на полную мощность). Правда, сейчас выгорание топлива увеличили, и перегружается только четверть активной зоны (примерно 90 ТВС). При этом оператор не имеет непосредственной визуальной обратной связи, и ориентируется только по показателям датчиков углов поворота колонны и захватов (точность позиционирования — менее 0,01 градуса), усилий извлечения и постановки.


Процесс перезагрузки включает множество этапов, производится с помощью специального механизма и напоминает игру в «15». Конечная цель — попадание свежих сборок из соответствующего барабана в нужное гнездо, а отработавших — в свой барабан, откуда они после очистки паром (от натрия) попадут в бассейн выдержки.

Гладко только на бумаге

Почему же при всех своих достоинствах реакторы на быстрых нейтронах не получили широкого распространения? В первую очередь это связано с особенностями их конструкции. Как уже было сказано выше, воду нельзя использовать в качестве теплоносителя, поскольку она является замедлителем нейтронов. Поэтому в быстрых реакторах в основном используются металлы в жидком состоянии — от экзотических свинцово-висмутовых сплавов до жидкого натрия (самый распространенный вариант для АЭС).

«В реакторах на быстрых нейтронах термические и радиационные нагрузки гораздо выше, чем в тепловых реакторах, — объясняет «ПМ» главный инженер Белоярской АЭС Михаил Баканов. — Это приводит к необходимости использовать специальные конструкционные материалы для корпуса реактора и внутриреакторных систем. Корпуса ТВЭЛ и ТВС изготовлены не из циркониевых сплавов, как в тепловых реакторах, а из специальных легированных хромистых сталей, менее подверженных радиационному ‘распуханию". С другой стороны, например, корпус реактора не подвержен нагрузкам, связанным с внутренним давлением, — оно лишь чуть выше атмосферного».


По словам Михаила Баканова, в первые годы эксплуатации основные трудности были связаны с радиационным распуханием и растрескиванием топлива. Эти проблемы, впрочем, вскоре были решены, были разработаны новые материалы — как для топлива, так и для корпусов ТВЭЛов. Но даже сейчас кампании ограничены не столько выгоранием топлива (которое на БН-600 достигает показателя 11%), сколько ресурсом материалов, из которых изготовлены топливо, ТВЭЛы и ТВСы. Дальнейшие проблемы эксплуатации были связаны в основном с протечками натрия второго контура, химически активного и пожароопасного металла, бурно реагирующего на соприкосновение с воздухом и водой: «Длительный опыт эксплуатации промышленных энергетических реакторов на быстрых нейтронах есть только у России и Франции. И мы, и французские специалисты с самого начала сталкивались с одними и теми же проблемами. Мы их успешно решили, с самого начала предусмотрев специальные средства контроля герметичности контуров, локализации и подавления протечек натрия. А французский проект оказался менее подготовлен к таким неприятностям, в результате в 2009 году реактор Phenix был окончательно остановлен».


«Проблемы действительно были одни и те же, — добавляет директор Белоярской АЭС Николай Ошканов, — но вот решали их у нас и во Франции различными способами. Например, когда на Phenix погнулась головная часть одной из сборок, чтобы захватить и выгрузить ее, французские специалисты разработали сложную и довольно дорогую систему ‘видения" сквозь слой натрия. А когда такая же проблема возникла у нас, один из наших инженеров предложил использовать видеокамеру, помещенную в простейшую конструкцию типа водолазного колокола, — открытую снизу трубу с поддувом аргона сверху. Когда расплав натрия был вытеснен, операторы с помощью видеосвязи смогли навести захват механизма, и гнутая сборка была успешно извлечена».

Быстрое будущее

«В мире не было бы такого интереса к технологии быстрых реакторов, если бы не успешная многолетняя эксплуатация нашего БН-600, — говорит Николай Ошканов.- Развитие атомной энергетики, на мой взгляд, в первую очередь связано с серийным производством и эксплуатацией именно быстрых реакторов. Только они позволяют вовлечь в топливный цикл весь природный уран и таким образом увеличить эффективность, а также в десятки раз уменьшить количество радиоактивных отходов. В этом случае будущее атомной энергетики будет действительно светлым».

Уникальный российский реактор на быстрых нейтронах, работающий на Белоярской АЭС, вывели на мощность 880 мегаватт — об этом сообщает пресс-служба Росатома.

Реактор работает на энергоблоке № 4 Белоярской АЭС и сейчас проходят плановые испытания генерирующего оборудования. В соответствии с программой испытаний энергоблок обеспечивает в течение 8 часов поддержание электрической мощности на уровне не ниже 880 мегаватт.

Мощность реактора поднимается поэтапно, для того что бы в итоге по результатам испытаний получить аттестацию на проектном уровне мощности в 885 мегаватт. На данный момент реактор аттестован на мощность 874 мегаватта.

Напомним, что на Белоярской АЭС работает два реактора на быстрых нейтронах. С 1980 года здесь работает реактор БН-600 — долгое время он был единственным в мире реактором этого типа. Но в 2015 году начался поэтапный запуск второго реактора БН-800.

Почему это так важно и считается историческим событием для мировой атомной отрасли?

Реакторы на быстрых нейтронах позволяют реализовать замкнутый топливный цикл (в БН-600 в настоящее время он не реализован). Поскольку «сжигается» только уран-238, после переработки (извлечения продуктов деления и добавления новых порций урана-238) топливо можно вновь загружать в реактор. А поскольку в уран-плутониевом цикле плутония образуется больше, чем распалось, излишек топлива можно использовать для новых реакторов.

Более того, этим способом можно перерабатывать излишки оружейного плутония, а также плутоний и младшие актиниды (нептуний, америций, кюрий), извлеченные из отработавшего топлива обычных тепловых реакторов (младшие актиниды в настоящее время представляют собой весьма опасную часть радиоактивных отходов). При этом количество радиоактивных отходов по сравнению с тепловыми реакторами уменьшается более чем в двадцать раз.

Почему же при всех своих достоинствах реакторы на быстрых нейтронах не получили широкого распространения? В первую очередь это связано с особенностями их конструкции. Как уже было сказано выше, воду нельзя использовать в качестве теплоносителя, поскольку она является замедлителем нейтронов. Поэтому в быстрых реакторах в основном используются металлы в жидком состоянии - от экзотических свинцово-висмутовых сплавов до жидкого натрия (самый распространенный вариант для АЭС).

«В реакторах на быстрых нейтронах термические и радиационные нагрузки гораздо выше, чем в тепловых реакторах, - объясняет «ПМ» главный инженер Белоярской АЭС Михаил Баканов. - Это приводит к необходимости использовать специальные конструкционные материалы для корпуса реактора и внутриреакторных систем. Корпуса ТВЭЛ и ТВС изготовлены не из циркониевых сплавов, как в тепловых реакторах, а из специальных легированных хромистых сталей, менее подверженных радиационному ‘распуханию’. С другой стороны, например, корпус реактора не подвержен нагрузкам, связанным с внутренним давлением, - оно лишь чуть выше атмосферного».

По словам Михаила Баканова, в первые годы эксплуатации основные трудности были связаны с радиационным распуханием и растрескиванием топлива. Эти проблемы, впрочем, вскоре были решены, были разработаны новые материалы - как для топлива, так и для корпусов ТВЭЛов. Но даже сейчас кампании ограничены не столько выгоранием топлива (которое на БН-600 достигает показателя 11%), сколько ресурсом материалов, из которых изготовлены топливо, ТВЭЛы и ТВСы. Дальнейшие проблемы эксплуатации были связаны в основном с протечками натрия второго контура, химически активного и пожароопасного металла, бурно реагирующего на соприкосновение с воздухом и водой: «Длительный опыт эксплуатации промышленных энергетических реакторов на быстрых нейтронах есть только у России и Франции. И мы, и французские специалисты с самого начала сталкивались с одними и теми же проблемами. Мы их успешно решили, с самого начала предусмотрев специальные средства контроля герметичности контуров, локализации и подавления протечек натрия. А французский проект оказался менее подготовлен к таким неприятностям, в результате в 2009 году реактор Phenix был окончательно остановлен».

«Проблемы действительно были одни и те же, - добавляет директор Белоярской АЭС Николай Ошканов, - но вот решали их у нас и во Франции различными способами. Например, когда на Phenix погнулась головная часть одной из сборок, чтобы захватить и выгрузить ее, французские специалисты разработали сложную и довольно дорогую систему ‘видения’ сквозь слой натрия. А когда такая же проблема возникла у нас, один из наших инженеров предложил использовать видеокамеру, помещенную в простейшую конструкцию типа водолазного колокола,- открытую снизу трубу с поддувом аргона сверху. Когда расплав натрия был вытеснен, операторы с помощью видеосвязи смогли навести захват механизма, и гнутая сборка была успешно извлечена».

Активная зона реактора на быстрых нейтронах устроена подобно луковице, слоями

370 топливных сборок образуют три зоны с различным обогащением по урану-235 - 17, 21 и 26% (изначально зон было только две, но, чтобы выровнять энерговыделение, сделали три). Они окружены боковыми экранами (бланкетами), или зонами воспроизводства, где расположены сборки, содержащие обедненный или природный уран, состоящий в основном из изотопа 238. В торцах ТВЭЛов выше и ниже активной зоны также расположены таблетки из обедненного урана, которые образуют торцевые экраны (зоны воспроизводства).

Тепловыделяющие сборки (ТВС) представляют собой собранный в одном корпусе набор тепловыделяющих элементов (ТВЭЛов) - трубочек из специальной стали, наполненных таблетками из оксида урана с различным обогащением. Чтобы ТВЭЛы не соприкасались между собой, и между ними мог циркулировать теплоноситель, на трубочки навивают тонкую проволоку. Натрий поступает в ТВС через нижние дросселирующие отверстия и выходит через окна в верхней части.

В нижней части ТВС расположен хвостовик, вставляемый в гнездо коллектора, в верхней - головная часть, за которую сборку захватывают при перегрузке. Топливные сборки различного обогащения имеют различные посадочные места, поэтому установить сборку на неправильное место просто невозможно.

Для управления реактором используется 19 компенсирующих стержней, содержащих бор (поглотитель нейтронов) для компенсации выгорания топлива, 2 стержня автоматического регулирования (для поддержания заданной мощности), а также 6 стержней активной защиты. Поскольку собственный нейтронный фон у урана мал, для контролируемого запуска реактора (и управления на малых уровнях мощности) используется «подсветка» - фотонейтронный источник (гамма-излучатель плюс бериллий).

Энергоблоки с реакторами на быстрых нейтронах могут существенно расширить топливную базу атомной энергетики и минимизировать радиоактивные отходы за счет организации замкнутого ядерно-топливного цикла. Подобными технологиями обладают лишь некоторые страны, и РФ, по признанию экспертов, является мировым лидером в этой области.

Реактор БН-800 (от «быстрый натриевый», электрической мощностью 880 мегаватт) — опытно-промышленный реактор на быстрых нейтронах с жидкометаллическим теплоносителем, натрием. Он должен стать прототипом коммерческих, более мощных энергоблоков с реакторами БН-1200.

источники

В реакторе на быстрых нейтронах нет замедлителя, и энергия вырабатывается за счёт деления урана и плутония быстрыми нейтронами. В качестве топлива используется диоксид урана U0 2 с большим обогащением по 2 3sU (17^-26%) или смесь U0 2 и Ри0 2 . Активная зона окружается зоной воспроизводства (бланкетом), состоящей из ТВЭЛов, содержащих топливное сырье (обедненный 228 U или 2 з 2 ТЬ). Вылетающие из активной зоны нейтроны захватываются в зоне воспроизводства ядрами топливного сырья, в результате образуется новое ядерное топливо - делящиеся изотопы 239PU и ^зи. Поэтому" такой реактор называется размножитель (breeder). Для быстрых реакторов не требуется замедлитель, а теплоноситель не должен замедлять нейтроны.

Реактор на быстрых нейтронах - ядерный реактор, использующий для поддержания цепной ядерной реакции нейтроны с энергией >о,1 МэБ. Реактор-конвертер - ядерный реаюпор, в процессе работы которого производится новое по изотопному составу ядерное топливо по сравнению со сжигаемым.

Реактор-размножитель (бридер) - ядерный реактор, позволяющий нарабатывать ядерное топливо в количестве, превышающем потребности самого реактора. Обычно это быстрый реактор, в котором коэффициент конверсии превышает 1 и осуществляется расширенное воспроизводство ядерного топлива. В таком реакторе нейтроны, освобождающиеся в процессе деления ядерного топлива (например, 233 U), взаимодействуют с ядрами помещённого в реактор сырьевого материала (например, 238 U), в результате образуется вторичное ядерное топливо (239 Ри). В этом случае, делящегося материала нарабатывается больше, чем сгорает в реакторе.

В реакторе-размножителе типа бридер воспроизводимое и сжигаемое топливо представляют собой изотопы одного и того же химического элемента (например, сжигается 2 35U, воспроизводится ^U), в реакторе типа конвертер - изотопы разных химических элементов (например, сжигается 235U, воспроизводится 2 39Ри).

В быстрых реакторах ядерным горючим является обогащённая смесь, содержащая не менее 15% изотопа ^и. Основное число делений вызывается быстрыми нейтронами, причём каждый акт деления сопровождается появлением большого (по сравнению с делением тепловыми нейтронами) числа нейтронов, которые при захвате ядрами 2 3 8 U превращает их (посредством двух последовательных /?-распадов) в ядра 2 39Pu. Обычно на юо разделившихся ядер горючего (2 35U) в быстрых реакторах образуется 150 ядер 2 з9Ри, способных к делению (коэффициент воспроизводства таких реакторов достигает 1,5, т.е. на 1 кг ^su получается до 1,5 кг 2 39Pu). Воспроизводство - размножение делящегося вторичного топлива из сырьевого (воспроизводящего) материала, т.е. ядерное превращение воспроизводящего материала в делящийся. В ядерном реакторе нейтроны, образующиеся цепной реакции деления, расходуются не только на её поддержание, но и поглощаются 238 U или 232 Th с образованием делящихся нуклидов (например, 239 Ри или 233 U). Вторичным делящимся топливом считают 239 Ри и 233 U, материалом воспроизводства - 238 U и 232 Th.

Воспроизводящий материал - материал, содержащий один или несколько воспроизводящих нуклидов.

Воспроизводящий нуклид - нуклид, способный прямо или косвенно превращаться в делящийся нуклид за счёт захвата нейтронов. В природе существуют два воспроизводящих нуклида - 238 U и 232 Th.

Коэффициент конверсии , Кк - отношение числа ядер)ювого делящегося материала, образующегося в процессе конверсии (воспроизводства), к числу разделившихся ядер исходного делящегося материала. Большинство тепловых реакторов имеют коэффициент конверсии 0?Ю,9 и поэтому являются потребителями делящихся материалов. В реакторах-размножителях коэффициент конверсии гщевышает единицу (1,15+1,30).

Коэффициент воспроизводства , Кв - отношение числа ядер образовавшегося топлива к числу ядер выгоревшего делящегося топлива.

Коэффициент воспроизводства представляет собой отношение числа образовавшихся делящихся ядер к числу выгоревших из первоначально загруженного топлива. Если коэффициент воспроизводства больше единицы, то в реакторе осуществляется расширенное воспроизводство топлива. Наибольший коэффициент воспроизводства имеют реакторы на быстрых нейтронах (для реакторов БН-боо /Св=1,4). Из реакторов на тепловых нейтронах, наибольший коэффициент воспроизводства имеют тяжеловодные реакторы, а также газоохлаждаемые реакторы с графитовым замедлителем (0,74-0,8). Легководные водо-водяные реакторы имеют наименьший коэффициент воспроизводства (0,54-0,6).

Отношение скорости накопления новых делящихся нуклидов, образующихся при захвате нейтрона воспроизводящими нуклидами, к скорости выгорания делящихся нуклидов называется коэффициентом конверсии, Кк. Кк называется коэффициентом воспроизводства (Кв), если он >1. Большинство тепловых реакторов имеют Кк=о,5*Н),9 и поэтому являются потребителями делящихся материалов. Из-за такого низкого значения Кк они называются конвертерами. Если Кк=1, то количество делящегося материала в активной зоне в процессе работы реактора не изменяется. Коэффициент воспроизводства 1,15-7-1,30 может быть достигнут только в быстрых размножителях, использующих U-Pu топливо. В таких реакторах с U-Pu оксидным топливом, со сталью в качестве конструкционного материала и натриевым теплоносителем, достигают Кв=1,15^-1,30 при среднем значении числа вторичных нейтронов tj «2,4. Доля делений на быстрых нейтронах, т. е. вклад воспроизводящих нуклидов в общий процесс деления, для теплового реактора составляет 0,014-0,03. В активной зоне быстрого бридера доля делений на быстрых нейтронах может достигать значения 0,15.

Достоинством быстрых реакторов является возможность организации в них расширенного воспроизводства ядерного топлива, т.е. одновременно с выработкой энергии производить вместо выгоревшего ядерного топлива новое. В бридерах из одного и того же количества урана можно получить в 6о раз больше энергии, чем в обычных реакторах на тепловых нейтронах. Реактор на быстрых нейтронах позволяет использовать как топливо изотопы тяжёлых элементов, не способные к делению в реакторах на тепловых нейтронах. В топливный цикл мог>т быть вовлечены запасы 2 з 8 и и 2 з 2 ТЬ, которых в природе значительно больше, чем 2 35U. Может сжигаться и обеднённый уран, оставшийся после обогащения ядерного горючего 2 ззи.

При работе быстрого реактора происходит интенсивное выделение нейтронов, которые поглощаются слоем 2 з 8 и, расположенным вокруг активной зоны. Средняя глубина выгорания уран-плутонивого топлива в быстром реакторе составляет 1004-150 МВтсут/кг, т.е. она в 2,54-3 раза выше, чем в реакторах на тепловых нейтронах. Для достижения этой глубины выгорания требуется высокая радиационная стойкость ТВЭЛов, необходима стабильность геометрических параметров, сохранение герметичности и пластичности оболочек ТВЭЛов, их совместимость с продуктами деления, устойчивость к коррозионному воздействию теплоносителя и т.п. По своим физическим принципам быстрые реакторы с жидкометаллическим охлаждением имеют наибольший потенциал внутренне присущей безопасности.

Быстрые реакторы практически не имеют ограничений по топливным ресурсам. К достоинствам быстрых реакторов можно также отнести большую степень выгорания топлива (т.е. больший срок кампании), а к недостаткам - дороговизну, из-за невозможности использования простейшего теплоносителя - воды, конструкционной сложности, высоких капитальных затрат и высокой стоимости высокообогащенного топлива.

Тепловыделение реактора на быстрых нейтронах в 104-15 раз превосходит тепловыделение реакторов на медленных нейтронах. Теплосъём в таком реакторе можно осуществить только с помощью жидкометаллических теплоносителей, например натрия, калия или энергоёмких газовых теплоносителей, обладающих наилу"чшими теплотехническими и теплофизическими характеристиками, таких как гелий и диссоциирующие газы.

Преимущество натрия как теплоносителя по сравнению с друтими жидкими металлами: низкая температура плавления (7^=98°), низкое давление пара, высокая температура кипения, превосходная теплопроводность, низкая вязкость, небольшой вес, тепловая и радиационная стабильность, малое коррозионное воздействие на конструкционные материалы, доступный и дешёвый материал, умеренные затраты мощности на его перекачку (из-за лёгкого веса и низкой вязкости). Натрий реагирует со следами кислорода и воды, содержащимися в окружающей среде, с образованием гидроксида натрия и водорода, тем самым защищая другие компоненты реактора от коррозии. Лёгкий вес (низкая плотность) натрия улучшает устойчивость при землетрясениях. При работе с натрием следует учитывать, что чистота натрия высока: иногда требуется 99,95 %.

Натрий является очень активным химическим элементом. Он горит в воздухе и в атмосфере других окисляющих агентов. Горячий натрий в контакте с бетоном может реагировать с компонентами бетона и выделять водород, который в свою очередь взрывоопасен. Возможны реакции натрия с водой и органическими материалами, сопровождающиеся воспламенением. Продукт активации натрия нейтронами 2Tj/ 2 =14,96 ч).

В связи с большим тепловыделением и чтобы исключить контакт радиоактивного натрия с водой при возможных нарушениях нормального режима теплообмена, технологическую схему реактора выбирают трёхконтурной: в первом и втором контурах в качестве теплоносителя используется натрий, в третьем - вода и пар. Натрий первого контура охлаждается в промежуточных теплообменниках натрием второго контура. В промежуточном контуре с натриевым теплоносителем создается более высокое давление, чем в первом, чтобы предотвратить протечку радиоактивного теплоносителя из первого контура через возможные дефекты в теплообменнике. В парогенераторах второго контура натрий передаёт тепло воде третьего контура, в результате чего вырабатывается пар высокого давления, который направляется в турбину, соединённую с электрогенератором. Из турбины пар послушает в конденсатор. Во избежание утечки радиации контуры теплоносителя и парогенератора работают по замкнутым циклам.

Использование в качестве теплоносителя химически инертного вы- сококипящего расплавленного свинца (или РЬ/Bi-эвтектики) позволяет отказаться от трёхконтурной схемы отвода тепла и перейти на двухконтурную схему. Реактор с таким теплоносителем обладает естественной безопасностью: даже в случае разгерметизации свинцового контура и его непосредственного контакта с атмосферой, выбросы токсичности и радиоактивности не потребуют эвакуации населения и отчуждения территории.

В активной зоне реактора на быстрых нейтронах размещаются ТВЭЛы с высокообогащенным 2 35U топливом (не менее 15% изотопа 2 35U). Активная зона окружается зоной воспроизводства - бланкетом, состоящим из ТВЭЛов, содержащих топливное сырье (обеднённый уран). Вылетающие из активной зоны нейтроны захватываются в зоне воспроизводства ядрами урана, в результате образуется новое ядериое топливо - 2 39Ри, которое простыми операциями может быть доведено до оружейного качества.

Рис. 7.

Реакторы на быстрых нейтронах создавались для производства оружейного плутония. Сейчас они нашли применение в сфере энергетики, в частности, для обеспечения расширенного воспроизводства делящегося плутония 2 з9Ри из 2 з 8 и с целью сжигания всего или значительной части природного урана, а также имеющихся запасов обедненного урана. При развитии энергетики реакторов на быстрых нейтронах может быть решена задача самообеспечения ядерной энергетики топливом. Быстрые реакторы привлекают внимание как аппараты для сжигания актинидов (в первую очередь - оружейного и реакторного плутония) и отходов рециклинга ОЯТ, что позволяет решить как проблему распространения оружейных нуклидов, так и проблему безопасного обращения с радиоактивными отходами. Внедрение реакторов на быстрых нейтронах в энергетику могло бы 6о раз увеличить эффективность использования урана.

В России на Белоярской АЭС работает БН-боо - корпусной реактор -размножитель с интегральной компоновкой оборудования на быстрых нейтронах.

Интсгралъноея компоновка - схема реактора, при которой все элементы первичной системы охлаждения монтируются в одном объёме с реактором.

Тепловая схема блока трехконтурная: в первом и втором контурах теплоносителем является натрий, в третьем - вода и пар. Отвод тепла от активной зоны осуществляется тремя независимыми петлями циркуляции, каждая из которых состоит из главного циркуляционного насоса 1 контура, двух промежуточных теплообменников, главного циркуляционного насоса 2 контура с буферной ёмкостью на входе и с баком аварийного сброса давления, парогенератора, конденсационной турбины со стандартной тепловой схемой и генератора. Теплоноситель - натрий.

Электрическая мощность реактора боо МВт, тепловая - 1470 МВт. Температура теплоносителя на входе в реактор - 370 0 , а на выходе - 550°, давление пара 14,2 МПа, температура пара 505 0 .

Ядериый реактор БН-боо выполнен с «интегральной» компоновкой оборудования, при которой активная зона и оборудование первого контура (главные циркуляционные насосы и промежуточные теплообменники) размещены в корпусе реактора. ТВЭЛы заполнены по длине активной зоны втулками из обогащенного оксида урана (или смеси оксида урана и оксида плутония), а выше и ниже активной зоны расположены торцевые экраны из брикетов оксида обеднённого урана. ТВЭЛы зоны воспроизводства заполнены брикетами из обедненного урана. Газовые полости над уровнем натрия в реакторе заполнены аргоном.

Рис. 8. Конструкция реактора БН-боо: 1 - шахта; 2 - корпус; з - главный циркуляционный насос первого контура; 4 - электродвигатель насоса; 5 - большая поворотная пробка; 6 - радиационная защита; 7 - теплообменник «натрий-натрий»; 8 - центральная поворотная колонна с механизмами СУЗ; 9 - активная зона.

Главная же особенность использования уран-плутониевого топлива в БН состоит в том, что в его активной зоне процесс деления ядер быстрыми нейтронами сопровождается большим выходом (на 20-^27%) вторичных нейтронов, чем в реакторах на тепловых нейтронах. Это создаёт основную предпосылку для получения высокого значения коэффициента воспроизводства и обеспечивает расширенное воспроизводство ядерного топлива в реакторах-размножителях.

В настоящее время на Белоярской АЭС строится реактор БН-8оо мощностью 88о МВ, призванный существенно расширить топливную базу атомной энергетики и минимизировать радиоактивные отходы за счёт организации замкнутого ЯТЦ.

Академик Ф. Митенков, научный руководитель ФГУП "Опытное конструкторское бюро машиностроения" им. И. И. Африкантова (г. Нижний Новгород).

Академик Федор Михайлович Митенков был удостоен премии "Глобальная энергия" 2004 года за разработку физико-технических основ и создание энергетических реакторов на быстрых нейтронах (см. "Наука и жизнь" №8, 2004 г.). Исследования, проведенные лауреатом, и их практическое воплощение в действующие реакторные установки БН-350, БН-600, строящуюся БН-800 и проектируемую БН-1800, открывают человечеству новое, перспективное направление развития атомной энергетики.

Белоярская АЭС с реактором БН-600.

Академик Ф. М. Митенков на церемонии вручения премии "Глобальная энергия" в июне 2004 года.

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Принципиальная схема реактора на быстрых нейтронах БН-350.

Принципиальная схема быстрого энергетического реактора БН-600.

Центральный зал реактора БН-600.

Реактор на быстрых нейтронах БН-800 имеет электрическую мощность 880 МВт, тепловую 1,47 ГВт. При этом его конструкция обеспечивает полную безопасность как при нормальной работе, так и при любой мыслимой аварии.

Наука и жизнь // Иллюстрации

Потребление энергии - важнейший показатель, во многом определяющий уровень экономического развития, национальную безопасность и благосостояние населения любой страны. Рост энергопотребления всегда сопровождал развитие человеческого общества, но особенно стремительным он был на протяжении ХХ века: потребление энергии увеличилось почти в 15 раз, достигнув к его концу абсолютной величины около 9,5 млрд тонн нефтяного эквивалента (т.н.э.). Сжигание угля, нефти, природного газа обеспечивает около 80% мирового энергопотребления. В XXI веке его рост, несомненно, будет продолжаться, особенно в развивающихся странах, для которых экономическое развитие и повышение качества жизни населения неизбежно связаны со значительным увеличением количества потребляемой энергии, в первую очередь ее наиболее универсального вида - электричества. К середине XXI века прогнозируется удвоение мирового энергопотребления и утроение потребления электроэнергии.

Общая тенденция роста энергопотребления усиливает зависимость большинства стран от импорта нефти и природного газа, обостряет конкуренцию за доступ к источникам энергоресурсов, порождает угрозу глобальной безопасности. Одновременно возрастает озабоченность экологическими последствиями производства энергии, в первую очередь из-за опасности недопустимого загрязнения атмосферы выбросами продуктов сжигания углеводородного топлива.

Поэтому в не столь уж отдаленном будущем человечество будет вынуждено перейти на использование альтернативных "безуглеродных" технологий производства энергии, которые позволят в течение длительного времени надежно удовлетворять растущие потребности в энергии без недопустимых экологических последствий. Однако приходится признать, что известные на сегодня возобновляемые источники энергии - ветровой, солнечной, геотермальной, приливной и др. - по своим потенциальным возможностям не могут служить для крупномасштабного энергопроизводства (см. "Наука и жизнь" № 10, 2002 г. - Прим. ред. ). А весьма многообещающая технология управляемого термоядерного синтеза все еще находится на стадии исследований и создания демонстрационного ядерного реактора (см. "Наука и жизнь"№8, 2001 г. ,№9, 2001 г. - Прим. ред. ).

По мнению многих специалистов, к числу которых относится и автор настоящей статьи, реальным энергетическим выбором человечества в XXI веке станет широкое использование ядерной энергии на основе реакторов деления. Атомная энергетика могла бы уже сейчас взять на себя значительную часть прироста мировых потребностей в топливе и энергии. Сегодня она обеспечивает около 6% мирового потребления энергии, в основном электрической, где ее доля составляет около 18% (в России - около 16%).

Для более широкого использования ядерной энергии, с тем чтобы она стала основным базовым источником энергии уже в текущем столетии, необходимы несколько условий. Прежде всего, атомной энергетике нужно отвечать требованиям гарантированной безопасности для населения и окружающей среды, а природным ресурсам для производства ядерного топлива - обеспечивать функционирование "большой" атомной энергетики по меньшей мере в течение нескольких столетий. И, кроме того, по технико-экономические показателям атомная энергетика должна не уступать лучшим источникам энергии на углеводородном топливе.

Посмотрим, насколько современная атомная энергетика отвечает этим требованиям.

О гарантированной безопасности атомной энергетики

Вопросы безопасности атомной энергетики с момента ее зарождения рассматривались и достаточно эффективно решались системно и на научной основе. Однако в период ее становления все-таки возникали аварийные ситуации с недопустимыми выбросами радиоактивности, в том числе две крупномасштабные аварии: на АЭС "Три Майл Айленд" (США) в 1979 году и на Чернобыльской АЭС (СССР) в 1986-м. В связи с этим мировое сообщество ученых и специалистов-атомщиков под эгидой Международного агентства по атомной энергии (МАГАТЭ) разработало рекомендации, соблюдение которых практически исключает недопустимые воздействия на окружающую среду и население при любых физически возможных авариях на АЭС. Они, в частности, предусматривают: если в проекте с достоверностью не обосновано, что расплавление активной зоны реактора исключается, возможность такой аварии необходимо учитывать и доказывать, что предусмотренные в конструкции реактора физические барьеры гарантированно исключают недопустимые последствия для окружающей среды. Рекомендации МАГАТЭ вошли составной частью в национальные нормативы по безопасности атомной энергетики многих стран мира. Некоторые инженерные решения, обеспечивающие безопасность эксплуатации современных реакторов, описаны ниже на примере реакторов БН-600 и БН-800.

Ресурсная база для производства ядерного топлива

Специалистам-атомщикам известно, что существующая технология атомной энергетики, основанная на так называемых "тепловых" ядерных реакторах с водяным или графитовым замедлителем нейтронов, не может обеспечить развития крупномасштабной атомной энергетики. Это связано с низкой эффективностью использования природного урана в таких реакторах: используется только изотоп U-235, содержание которого в природном уране составляет всего лишь 0,72%. Поэтому долговременная стратегия развития "большой" атомной энергетики предполагает переход к прогрессивной технологии замкнутого топливного цикла, основанной на использовании так называемых быстрых ядерных реакторов и переработке топлива, выгруженного из реакторов атомных станций, для последующего возврата в энергетический цикл невыгоревших и вновь образовавшихся делящихся изотопов.

В "быстром" реакторе бoльшую часть актов деления ядерного топлива вызывают быстрые нейтроны с энергией более 0,1 МэВ (отсюда и название "быстрый" реактор). При этом в реакторе происходит деление не только очень редкого изотопа U-235, но и U-238 - основной составляющей природного урана (~99,3%), вероятность деления которого в спектре нейтронов "теплового реактора" очень низка. Принципиально важно, что в "быстром" реакторе при каждом акте деления ядер образуется большее количество нейтронов, которые могут быть использованы для интенсивного превращения U-238 в делящийся изотоп плутония Pu-239. Это превращение происходит в результате ядерной реакции:

Нейтронно-физические особенности быстрого реактора таковы, что процесс образования в нем плутония может иметь характер расширенного воспроизводства, когда в реакторе образуется вторичного плутония больше, чем выгорает первоначально загруженного. Процесс образования избыточного количества делящихся изотопов в ядерном реакторе получил название "бридинг" (от англ. breed - размножать). С этим термином связано принятое в мире название быстрых реакторов с плутониевым топливом - реакторы-бридеры, или размножители.

Практическая реализация процесса бридинга имеет принципиальное значение для будущего атомной энергетики. Дело в том, что такой процесс дает возможность практически полностью использовать природный уран и тем самым почти в сто раз увеличить "выход" энергии из каждой тонны добытого природного урана. Это открывает путь к практически неисчерпаемым топливным ресурсам атомной энергетики на длительную историческую перспективу. Поэтому общепризнано, что использование бридеров - необходимое условие создания и функционирования атомной энергетики большого масштаба.

После того как в конце 1940-х годов была осознана принципиальная возможность создания быстрых реакторов-размножителей, в мире начались интенсивные исследования их нейтронно-физических характеристик и поиски соответствующих инженерных решений. В нашей стране инициатором исследований и разработок по быстрым реакторам стал академик Украинской академии наук Александр Ильич Лейпунский, который до своей кончины в 1972 году был научным руководителем обнинского Физико-энергетического института (ФЭИ).

Инженерные сложности создания быстрых реакторов связаны с целым рядом присущих им особенностей. К их числу относятся: большая энергонапряженность топлива; необходимость обеспечить его интенсивное охлаждение; высокие рабочие температуры теплоносителя, элементов конструкции реактора и оборудования; радиационные повреждения конструкционных материалов, вызванные интенсивным облучением быстрыми нейтронами. Для решения этих новых научно-технических задач и отработки технологии быстрых реакторов потребовалось развитие крупномасштабной научно-исследовательской и опытно-экспериментальной базы с уникальными стендами, а также создание в 1960-1980-е годы целого ряда экспериментальных и демонстрационных энергетических реакторов этого типа в России, США, во Франции, в Великобритании и Германии. Примечательно, что во всех странах в качестве охлаждающей среды - теплоносителя - для быстрых реакторов был выбран натрий, несмотря на то, что он активно реагирует с водой и водяным паром. Решающими достоинствами натрия как теплоносителя стали его исключительно хорошие теплофизические свойства (высокая теплопроводность, большая теплоемкость, высокая температура кипения), низкие затраты энергии на циркуляцию, пониженное коррозионное воздействие на конструкционные материалы реактора, относительная простота его очистки в процессе эксплуатации.

Первый отечественный демонстрационный энергетический реактор на быстрых нейтронах БН-350 тепловой мощностью 1000 МВт был введен в строй в 1973 году на восточном побережье Каспийского моря (см. "Наука и жизнь" № 11, 1976 г. - Прим. ред. ). Он имел традиционную для атомной энергетики петлевую схему передачи теплоты и паротурбинный комплекс для преобразования тепловой энергии. Часть тепловой мощности реактора использовалась для выработки электроэнергии, остальная шла на опреснение морской воды. Одна из отличительных особенностей схемы этой и последующих реакторных установок с натриевым теплоносителем - наличие промежуточного контура передачи теплоты между реактором и пароводяным контуром, продиктованное соображениями безопасности.

Реакторная установка БН-350, несмотря на сложность ее технологической схемы, успешно работала с 1973 по 1988 год (на пять лет дольше проектного времени) в составе Мангышлакского энергетического комбината и завода опреснения морской воды в г. Шевченко (ныне - Актау, Казахстан).

Большая разветвленность натриевых контуров в реакторе БН-350 вызывала беспокойство, поскольку в случае их аварийной разгерметизации мог возникнуть пожар. Поэтому, не дожидаясь пуска реактора БН-350, в СССР началось проектирование более мощного быстрого реактора БН-600 интегральной конструкции, в котором натриевые трубопроводы большого диаметра отсутствовали и почти весь радиоактивный натрий первого контура был сосредоточен в корпусе реактора. Это позволило практически полностью исключить опасность разгерметизации первого натриевого контура, снизить пожарную опасность установки, повысить уровень радиационной безопасности и надежности реактора.

Реакторная установка БН-600 надежно работает с 1980 года в составе третьего энергоблока Белоярской АЭС. Сегодня это самый мощный из действующих в мире реакторов на быстрых нейтронах, который служит источником уникального эксплуатационного опыта и базой для натурной отработки усовершенствованных конструкционных материалов и топлива.

Во всех последующих проектах реакторов этого типа в России, так же как и в большинстве проектов коммерческих быстрых реакторов, разработанных за рубежом, используется интегральная конструкция.

Обеспечение безопасности быстрых реакторов

Уже при проектировании первых энергетических реакторов на быстрых нейтронах большое внимание уделялось вопросам обеспечения безопасности как при их нормальной работе, так и при аварийных ситуациях. Направления поиска соответствующих проектных решений определялись требованием исключить недопустимые воздействия на окружающую среду и население за счет внутренней самозащищенности реактора, применения эффективных систем локализации потенциально возможных аварий, ограничивающих их последствия.

Самозащищенность реактора основана в первую очередь на действии отрицательных обратных связей, стабилизирующих процесс деления ядерного топлива при повышении температуры и мощности реактора, а также на свойствах используемых в реакторе материалов. Для иллюстрации внутренне присущей быстрым реакторам безопасности укажем некоторые их особенности, связанные с использованием в них натриевого теплоносителя. Высокая температура кипения натрия (883oС при нормальных физических условиях) позволяет поддерживать в корпусе реактора давление, близкое к атмосферному. Это упрощает конструкцию реактора и повышает его надежность. Корпус реактора не подвергается в процессе работы большим механическим нагрузкам, поэтому его разрыв еще менее вероятен, чем в существующих реакторах с водой под давлением, где он относится к классу гипотетических. Но даже такая авария в быстром реакторе не представляет опасности с точки зрения надежного охлаждения ядерного топлива, поскольку корпус окружен герметичным страховочным кожухом, а объем возможной утечки натрия в него незначителен. Разгерметизация трубопроводов с натриевым теплоносителем в быстром реакторе интегральной конструкции также не приводит к опасной ситуации. Поскольку теплоемкость натрия достаточно велика, даже при полном прекращении отвода тепла в пароводяной контур температура теплоносителя в реакторе будет повышаться со скоростью примерно 30 градусов в час. При нормальной работе температура теплоносителя на выходе из реактора составляет 540oС. Значительный запас температуры до закипания натрия дает резерв времени, достаточный, чтобы принять меры, ограничивающие последствия подобной маловероятной аварии.

В проекте реактора БН-800, в котором использованы основные инженерные решения БН-600, приняты дополнительные меры, обеспечивающие сохранение герметичности реактора и исключающие недопустимые воздействия на окружающую среду, даже при гипотетической крайне маловероятной аварии с расплавлением активной зоны реактора.

Блочный щит управления реактора БН-600.

Многолетняя эксплуатация быстрых реакторов подтвердила достаточность и эффективность предусмотренных мер обеспечения безопасности. За 25 лет эксплуатации реактора БН-600 не было ни аварий со сверхнормативными выбросами радиоактивности, ни облучения персонала и тем более местного населения. Быстрые реакторы продемонстрировали высокую устойчивость в работе, ими легко управлять. Освоена технология натриевого теплоносителя, которая эффективно нейтрализует его пожароопасность. Утечки и горение натрия персонал уверенно обнаруживает, а их последствия надежно ликвидирует. В последние годы все более широкое применение в проектах быстрых реакторов находят системы и устройства, способные перевести реактор в безопасное состояние без вмешательства персонала и подвода энергии со стороны.

Технико-экономические показатели быстрых реакторов

Особенности натриевой технологии, повышенные меры безопасности, консервативный выбор проектных решений первых реакторов - БН-350 и БН-600 стали причинами более высокой их стоимости по сравнению с реакторами, охлаждаемыми водой. Однако их создавали главным образом для проверки работоспособности, безопасности и надежности быстрых реакторов. Эта задача и была решена их успешной эксплуатацией. При создании следующей реакторной установки - БН-800, предназначенной для массового использования в атомной энергетике, больше внимания уделили технико-экономическим характеристикам, и в результате по удельным капитальным затратам удалось существенно приблизиться к ВВЭР-1000 - основному типу отечественных энергетических реакторов на медленных нейтронах.

К настоящему времени можно считать установленным, что быстрые реакторы с натриевым теплоносителем имеют большой потенциал дальнейшего технико-экономического совершенствования. К основным направлениям улучшения их экономических характеристик при одновременном повышении уровня безопасности относятся: повышение единичной мощности реактора и основных компонентов энергоблока, совершенствование конструкции основного оборудования, переход на закритические параметры пара с целью увеличения термодинамического кпд цикла преобразования тепловой энергии, оптимизация системы обращения со свежим и отработавшим топливом, увеличение глубины выгорания ядерного топлива, создание активной зоны с высоким внутренним коэффициентом воспроизводства (КВ) - до 1, увеличение срока службы до 60 лет и более.

Совершенствование отдельных видов оборудования, как показали конструкторские проработки, выполненные в ОКБМ, может оказать весьма существенное влияние на улучшение технико-экономических показателей и реакторной установки, и энергоблока в целом. Например, проработки по совершенствованию системы перегрузки перспективного реактора БН-1800 показали возможность значительного уменьшения металлоемкости этой системы. Замена модульных парогенераторов на корпусные оригинальной конструкции позволяет значительно уменьшить их стоимость, а также площадь, объем и материалоемкость парогенераторного отделения энергоблока.

Как влияет мощность реактора и технологическое совершенствование оборудования на металлоемкость и уровень капитальных затрат, можно видеть из таблицы.

Совершенствование быстрых реакторов, естественно, потребует определенных усилий со стороны промышленных предприятий, научных и проектных организаций. Так, для увеличения глубины выгорания ядерного топлива предстоит разработать и освоить производство конструкционных материалов активной зоны реактора, более стойких к нейтронному облучению. Работы в этом направлении в настоящее время ведутся.

Быстрые реакторы могут служить не только для получения энергии. Потоки нейтронов высокой энергии способны эффективно "сжигать" наиболее опасные долгоживущие радионуклиды, образующиеся в отработавшем ядерном топливе. Это имеет принципиальное значение для решения проблемы обращения с радиоактивными отходами атомной энергетики. Дело в том, что период полураспада некоторых радионуклидов (актиноидов) намного превышает научно обоснованные сроки стабильности геологических формаций, которые рассматриваются в качестве мест окончательного захоронения радиоактивных отходов. Поэтому, применив замкнутый топливный цикл с выжиганием актиноидов и трансмутацией долгоживущих продуктов деления в короткоживущие, можно радикально решить проблему обезвреживания отходов атомной энергетики и многократно уменьшить объем радиоактивных отходов, подлежащих захоронению.

Перевод атомной энергетики, наряду с "тепловыми" реакторами, на быстрые реакторы-бридеры, а также на замкнутый топливный цикл позволит создать безопасную энергетическую технологию, в полной мере отвечающую требованиям устойчивого развития человеческого общества.