Презентация к уроку по геометрии (10 класс) на тему: Элементы симметрии правильных многогранников. Элементы симметрии многогранников

ТЕКСТОВАЯ РАСШИФРОВКА УРОКА:

Наше знакомство с многогранниками продолжается.

Вспомним, что многогранник называется правильным, если выполнены следующие условия:

1.многогранник выпуклый;

2. все его грани являются равными правильными многоугольниками;

3. в каждой его вершине сходится одинаковое число граней;

4. все его двугранные углы равны.

На прошлых занятиях вы узнали об единственности существования пяти видов правильных многогранников:

тетраэдра, октаэдра, икосаэдра, гексаэдра(куба) и додекаэдра.

Сегодня мы рассмотрим элементы симметрии изученных правильных многогранников.

Правильный тетраэдр не имеет центра симметрии.

Его осью симметрии является прямая, проходящая через середины противоположных рёбер.

Плоскостью симметрии является плоскость, проходящая через любое ребро перпендикулярно противоположному ребру.

Правильный тетраэдр имеет три оси симметрии и шесть плоскостей симметрии.

Куб обладает одним центром симметрии- это точка пересечения его диагоналей.

Осями симметрии являются прямые проходящие через центры противоположных граней и середины двух противоположных рёбер, не принадлежащих одной грани.

Куб имеет девять осей симметрии, которые проходят через центр симметрии.

Плоскость, проходящая через любые две оси симметрии, является плоскостью симметрии.

Куб имеет девять плоскостей симметрии.

Правильный октаэдр имеет центр симметрии - центр октаэдра, 9 осей симметрии и 9 плоскостей симметрии: три оси симметрии проходят через противоположные вершины, шесть - через середины ребер.

Центр симметрии октаэдра - точка пересечения его осей симметрии.

Три из 9 плоскостей симметрии тетраэдра проходят через каждые 4 вершины октаэдра, лежащие в одной плоскости.

Шесть плоскостей симметрии проходят через две вершины, не принадлежащие одной грани, и середины противоположных ребер.

Правильный икосаэдр имеет 12 вершин. Икосаэдр имеет центр симметрии - центр икосаэдра, 15 осей симметрии и 15 плоскостей симметрии: Через первую пару противоположных вершин проходят пять плоскостей симметрии (каждая их них проходит через ребро, содержащее вершину, перпендикулярно противоположному углу).

Для третьей пары получим — 3 новых плоскости, а для четвертой — две плоскости и для пятой пары только одна новая плоскость.

Через шестую пару вершин не пройдет ни одной новой плоскости симметрии.

Правильный додекаэдр состоит из двенадцати правильных пятиугольников. Додекаэдр имеет центр симметрии - центр додекаэдра, 15 осей симметрии и 15 плоскостей симметрии: плоскости симметрии проходят через ребро, содержащее вершину, перпендикулярно противоположному ребру. Поэтому через первую пару противоположных пятиугольников проходит 5 плоскостей, через вторую пару — 4, через третью — 3, четвертую — 2, пятую — 1.

Решим несколько заданий, применяя полученные знания.

Доказать, что в правильном тетраэдре отрезки, соединяющие центры его граней, равны.

Так как все грани правильного тетраэдра равны и любая из них может считаться основанием, а три другие- боковыми гранями, то достаточно будет доказать равенство отрезков ОМ и ON.

Доказательство:

1.Дополнительное построение: проведём прямую DN до пересечения со стороной АС, получим точку F;

проведём прямую DM до пересечения со стороной АВ, получим точку Е.

Затем соединим вершину А с точкой F;

вершину С с точкой Е.

2.Рассмотрим треугольники ДЕО и ДОФ они

прямоугольные, т.к. ДО высота тетраэдра, тогда они равны по гипотенузе и катету: ДО-общая, ДЕ=ДФ(высоты равных граней тетраэдра)).

Из равенства данных треугольников следует, что OE=OF, ME=NF(середины равных сторон),

угол DEO равен углу DFO.

3. из выше доказанного следует что треугольники ОЕМ и ОФН равны по двум сторонам и углу между ними (см пн. 2).

А из равенства этих треугольников следует, что ОМ = ON.

Что и требовалось доказать.

Существует ли четырёхугольная пирамида, у которой противоположные грани перпендикулярны к основанию?

Докажем, что такой пирамиды не существует методом от противного.

Доказательство:

1. Пусть ребро РА1 перпендикулярно основанию пирамиды и ребро РА2 так же перпендикулярно основанию.

2.Тогда по теореме(две прямые, перпендикулярные к третьей, параллельны), мы получим что ребро РА1 параллельно ребру РА2.

3.Но пирамида имеет общую точку для всех боковых рёбер(а значит и граней)- вершину пирамиды.

Мы получили противоречие, таким образом не существует четырёхугольной пирамиды, противоположные грани которой перпендикулярны к основанию.

Основной интерес к правильным многогранникам вызывает большое число симметрий, которыми они обладают. Под симметрией (или преобразованием симметрии) многогранника мы понимаем такое его движение как твердого тела в пространстве (например, поворот вокруг некоторой прямой, отражение относительно некоторой плоскости и т.д.), которое оставляет неизменными множества вершин, ребер и граней многогранника. Иначе говоря, под действием преобразования симметрии вершина, ребро или грань либо сохраняет свое исходное положение, либо переводится в исходное положение другой вершины, другого ребра или другой грани. Существует одна симметрия, которая свойственна всем многогранникам. Речь идет о тождественном преобразовании, оставляющем любую точку в исходном положении. С менее тривиальным примером симметрии мы встречаемся в случае прямой правильной р-угольной призмы.

Примеры размерности симметрии плоских фигур дают правильные многоугольники. Примеры симметрии пространственных фигур дают правильные призмы и пирамиды: они совмещаются сами с собой, например, поворотами вокруг оси, перпендикулярной плоскости основания и проходящей через его центр.

Мы будем понимать симметрию в общем смысле, как она определена в начале и как ее понимают, в частности, когда говорят о симметрии кристаллов. При этом наложения фигуры на себя называются преобразованиями симметрии.

Теорема. Рассмотрим данный правильный многогранник Р. Пусть А -- его вершина, а -- ребро с концом А, а -- грань со стороной а. Для любых других аналогичных его элементов А", а", а" существует наложение многогранника Р на себя, переводящее А" в А, а" в а, а" в а.

Доказательство

Переносом многогранника переведем вершину А" в А. Поворотом многогранника вокруг А переведем перенесенное ребро а" в а. Поворотом многогранника вокруг ребра а приведем (перенесенную и повернутую) грань а" в совпадение с гранью а. Так как грани равны, то грань а" полностью совместится с а.

Так как двугранные углы равны, то для граней р и р", смежных с а и а", есть только две возможности: 1) р" совпадает с р; 2) р" не совпадает с р, но будет симметрична р относительно плоскости грани а. В таком случае отражением в этой плоскости переведем Р" в р.

Итак, наложением всего многогранника Р мы совместили вершину А" с А, ребро а" -- с а, грани а", р", смежные по ребру а", -- с гранями а, р, смежными по ребру а.

Убедимся, что при этом многогранник оказывается совмещенным сам с собой. Две грани многогранного угла при вершине А совпали (а" с а, р" с р). Перейдем к граням у и у", соседним с р. Двугранные углы, которые они образуют с р, равны и расположены с одной стороны -- с той же, с какой лежит грань а. Поэтому грань у" совпадает с у. Так убедимся, что многогранные углы при вершине А совпали. Переходя к другой вершине, соединенной с А ребром, аналогично убедимся, что и при этой вершине многогранные углы совпадают. И так пройдя по всему многограннику, убедимся, что он совпал сам с собой, что и требовалось доказать. ?

Свойство правильных многогранников, установленное доказанной теоремой, означает, что они обладают, так сказать, максимальной мыслимой симметрией. Наложение, совмещение многогранника самого с собою, неизбежно совмещает какую-то вершину А" с А, ребро а" -- с а, грань а"-- с а, и примыкающую грань р" -- с р. Наложение этим вполне определено, оно только одно. Поэтому максимальное число возможных наложений будет тогда, когда каждую совокупность А, а, а, р можно перевести в каждую. А это так у правильных многогранников Очевидно, верно и обратное. Если многогранник обладает такой максимальной симметрией, то он правильный (так как ребро а совмещается с а", угол на грани а" при вершине А совмещается с таким же углом, и двугранный угол между а" и р 4 " совмещается с углом между а и р.-- так что все ребра и углы равны). Число наложений, совмещающих правильный многогранник сам с собою, равно 2 те, где т -- число ребер, сходящихся в одной вершине, и е -- число вершин; те наложений первого рода и те -- наложений второго рода. Они и образуют группу симметрии правильного многогранника. Группы симметрии у куба и октаэдра совпадают ввиду их двойственности. Так же совпадают группы симметрии у додекаэдра и икосаэдра. Группа тетраэдра является подгруппой группы куба, как видно из возможности вложить тетраэдр в куб (рис. 1.5, а). Наиболее интересные элементы симметрии -- это зеркальные оси: 4-го порядка у тетраэдра, 6-го порядка -- у куба, 10-го порядка -- у додекаэдра (рис. 1.5,б). Убедитесь, что это так, определив, как расположены эти оси. Оси симметрии и плоскости симметрии куба изображены на рис. 1.5 в, г.

1 .5 Подобие многогранников

Два многогранника называются подобными, если существует преобразование подобия, переводящее один многогранник в другой.

Подобные многогранники имеют соответственно равные многогранные углы и соответственно подобные грани. Соответственные элементы подобных многогранников называются сходственными. У подобных многогранников двугранные углы равны и одинаково расположены, а сходственные ребра пропорциональны.

Кроме того, справедливы следующие теоремы:

Теорема 1. Если в пирамиде провести секущую плоскость параллельно основанию, то она отсечет от нее пирамиду, подобную данной.

Теорема 2. Площади поверхностей подобных многогранников относятся как квадраты, а их объемы - как кубы сходственных линейных элементов многогранников.

Элементами симметрии называются вспомогательные геометрические образы (точка, линия, плоскость и их сочетания), с помощью которых мысленно можно совместить в пространстве равные грани кристалла (многогранника). При этом под симметрией кристалла понимается закономерное повторение в пространстве равных его граней, а также вершин и ребер.

Различают три основных элемента симметрии кристаллов – центр симметрии, плоскость симметрии и оси симметрии.

Центром симметрии называется воображаемая точка внутри кристалла, равноудаленная от его элементов ограничения (т. е. противоположных вершин, середин ребер и граней). Центр симметрии является точкой пересечения диагоналей правильной фигуры (куба, параллелепипеда) и обозначается буквой С , а по международной системе Германа-Могена – I.

Центр симметрии в кристалле может быть только один. Однако имеются кристаллы, в которых центр симметрии вообще отсутствует. При решении вопроса о том, имеется ли центр симметрии в Вашем кристалле, необходимо руководствоваться следующим правилом:

«При наличии центра симметрии в кристалле каждой его грани соответствует равная и противоположная ей грань».

На практических занятиях с лабораторными моделями наличие или отсутствие центра симметрии в кристалле устанавливается следующим образом. Кладем кристалл какой-либо его гранью на плоскость стола. Проверяем, присутствует ли сверху равная и параллельная ей грань. Повторяем ту же операцию для каждой грани кристалла. Если каждой грани кристалла отвечает сверху равная и параллельная ей грань, то центр симметрии в кристалле присутствует. Если хотя бы для одной грани кристалла не найдется сверху равной и параллельной ей грани, то центра симметрии в кристалле нет.

Плоскостью симметрии (обозначается буквой Р, по международной символике – m) называется воображаемая плоскость, проходящая через геометрический центр кристалла и разделяющая его на две зеркально равные половины. Кристаллы, имеющие плоскость симметрии, обладают двумя свойствами. Во-первых, две его половины, разделенные плоскостью симметрии, равны по объему; во-вторых, они равны, как отражения в зеркале.

Для проверки зеркального равенства половин кристалла необходимо из каждой его вершины провести воображаемые перпендикуляр к плоскости и продолжить его на то же расстояние от плоскости. Если каждой вершине соответствует с противоположной стороны кристалла зеркально отраженная ей вершина, то плоскость симметрии в кристалле присутствует. При определении плоскостей симметрии на лабораторных моделях кристалл ставится в фиксированное положение и затем мысленно рассекается на равные половины. Проверяется зеркальное равенство полученных половин. Считаем, сколько раз мы можем мысленно рассечь кристалл на две зеркально равные части. Помните, что кристалл при этом должен быть неподвижен!

Число плоскостей симметрии в кристаллах варьирует от 0 до 9. Например, в прямоугольном параллелепипеде находим три плоскости симметрии, т. е. 3Р.

Осью симметрии называется воображаемая линия, проходящая через геометрический центр кристалла, при повороте вокруг которой кристалл несколько раз повторяет свой внешний вид в пространстве, т. е. самосовмещается. Это означает, что после поворота на некоторый угол на место одних граней кристалла становятся другие, равные им грани.

Основной характеристикой оси симметрии является наименьший угол поворота, при котором кристалл первый раз «повторяется» в пространстве. Этот угол называется элементарным углом поворота оси и обозначается α, например:

Элементарный угол поворота любой оси обязательно содержится целое число раз в 360°, т. е. (целое число), где n – порядок оси.

Таким образом, порядком оси называется целое число, показывающее, сколько раз элементарный угол поворота данной оси содержится в 360°. Иначе, порядок оси – это число «повторений» кристалла в пространстве при полном его повороте вокруг данной оси.

Оси симметрии обозначаются буквой L, порядок оси - маленькой цифрой справа внизу, например, L 2 .

В кристаллах возможны следующие оси симметрии и соответствующие им элементарные углы поворота.

Таблица 1

Соотношение осей симметрии и элементарных углов поворота

В любом кристалле существует бесконечное количество осей симметрии первого порядка, поэтому на практике они не определяются.

Осей симметрии 5-го и любого порядка выше 6-го в кристаллах вообще не существует. Эта особенность кристаллов формулируется как закон симметрии кристаллов. Закон симметрии кристаллов объясняется специфичностью их внутреннего строения, а именно – наличием пространственной решетки, которая не допускает возможности существования осей 5-го, 7-го, 8-го и так далее порядков.

В кристалле может быть несколько осей одного и того же порядка. Например, в прямоугольном параллелепипеде присутствуют три оси 2-го порядка, т. е. 3L 2.

В кубе - 3 оси 4-го порядка, 4 оси 3-го порядка и 6 осей 2-го порядка. Оси симметрии наивысшего порядка в кристалле называют главными.

Нахождение осей симметрии на моделях во время лабораторных занятий осуществляется в следующем порядке. Кристалл берется кончиками пальцев одной руки за его противоположные точки (вершины, середины ребер или граней). Воображаемая ось ставится перед собой вертикально; запоминается какой-либо характерный внешний вид кристалла. Затем кристалл вращается другой рукой вокруг воображаемой оси до тех пор, пока его первоначальный внешний вид не «повторится» в пространстве. Считаем, сколько раз кристалл «повторяется» в пространстве при полном повороте вокруг данной оси. Это и будет ее порядок. Аналогичным образом проверяются все другие теоретически возможные направления прохождения оси симметрии в кристалле. Данные оси симметрии называются простыми.

Кроме них существуют сложные оси симметрии, называемые зеркально-поворотными и инверсионными. Зеркально-поворотная ось симметрии представляет собой мысленное сочетание простой оси и перпендикулярной ей плоскости симметрии. Зеркально-поворотные оси могут быть тех же порядков, что простые, но на практике используется только ось 4-го порядка, которая обозначается L 4 2 и всегда ровна L 2, но не наоборот.

Инверсионная ось симметрии представляет собой мысленное сочетание простой оси симметрии и центра симметрии. На практике и в теории используются только инверсионные оси 4-го и 6-го порядка. Они обозначаются Li 4 и Li 6 .

Сочетание всех элементов симметрии кристалла, записанное условными обозначениями, называется его формулой симметрии . В формуле симметрии сначала перечисляются оси симметрии, затем плоскости симметрии и последним показывается наличие центра симметрии. Между обозначениями не ставится точек или запятых. Например, формула симметрии прямоугольного параллелепипеда: 3L 3 3PC; куба – 3L 4 4L 3 6L 2 9PC.

Виды симметрии кристаллов

Видами симметрии называются возможные в кристаллах сочетания элементов симметрии. Каждому виду симметрии соответствует определенная формула симметрии.

Всего для кристаллов теоретически доказано наличие 32 видов симметрии. Таким образом, всего существует 32 формулы симметрии кристаллов.

Все виды симметрии объединяются в 7 ступеней симметрии с учетом наличия характерных элементов симметрии.

1. Примитивная – объединяются виды симметрии, представленные только одиночными осями симметрии разного порядка: L 3 , L 4 , L 6 .

2. Центральная – помимо одиночных осей симметрии присутствует центр симметрии; кроме того, наряду с наличием четных осей симметрии появляется еще плоскость симметрии: L 3 С, L 4 PC, L 6 PC.

3. Планальная (план – плоскость, греч.) – присутствуют одиночная ось и плоскости симметрии: L 2 2P, L 4 4P.

4. Аксиальная (аксис – ось, греч.) – присутствуют только оси симметрии: 3L 2 , L 3 3L 2 , L 6 6L 2 .

5. Планаксиальная – присутствуют оси, плоскости и центр симметрии: 3L 2 3PC, L 4 4L 2 5PC.

6. Инверсионно-примитивная – наличие единственной инверсионной оси симметрии: L i 4 , L i 6 .

7. Инверсионно-планальная – наличие, помимо инверсионной оси, простых осей и плоскостей симметрии: L i 4 4L 2 2P, L i 6 3L 2 3P.

В каждую ступень симметрии объединяется разное количество видов симметрии: от 2 до 7.

Сингонии

Сингонией называется группа видов симметрии, обладающих одноименной главной осью симметрии и одинаковым общим уровнем симметрии (син – сходный, гониа – угол, дословно: сингония – сходноугольность, греч.). Переход от одной сингонии к другой сопровождается повышением степени симметрии кристаллов.

Всего выделяют 7 сингоний. В порядке последовательного повышения степени симметрии кристаллов они располагаются следующим образом.

1. Триклинная сингония (клин – угол, наклон, греч.) получила название с учетом той особенности кристаллов, что между всеми гранями углы всегда косые. Кроме С других элементов симметрии нет.

2. Моноклинная (монос – один, греч.) – в одном направлении между гранями кристаллов угол всегда косой. В кристаллах могут присутствовать L 2 , P и С. Ни один из элементов симметрии не повторяется хотя бы дважды.

3. Ромбическая – получила название по характерному поперечному сечению кристаллов (вспомните углы ромбические 1-го рода).

4. Тригональная – названа по характерному поперечному сечению (треугольник) и многогранным углам (тригональный, дитригональный). Обязательно присутствует одна L 3 .

5. Тетрагональная – характерны поперечное сечение в форме квадрата и многогранные углы – тетрагональный и дитетрагональный. Обязательно присутствует L 4 или L i4 .

6. Гексагональная – сечение в форме правильного шестиугольника, многогранные углы – гексагональный и дигексагональный. обязательно присутствие одной L 6 или L i 6 .

7. Кубическая – типична кубическая форма кристаллов. Характерно сочетание элементов симметрии 4L 3 .

Сингонии объединяются в 3 категории : низшую, среднюю и высшую.


Похожая информация.


Геометрия прекрасна тем, что, в отличие от алгебры, где не всегда понятно, что и зачем считаешь, дает наглядность объекта. Этот удивительный мир различных тел украшают собой правильные многогранники.

Общие сведения о правильных многогранниках

По мнению многих, правильные многогранники, или как их еще называют Платоновы тела, обладают неповторимыми свойствами. С этими объектами связано несколько научных гипотез. Когда начинаешь изучать данные геометрические тела, понимаешь, что практически ничего не знаешь о таком понятии, как правильные многогранники. Презентация этих объектов в школе не всегда проходит интересно, поэтому многие даже и не помнят, как они называются. В памяти большинства людей остается только куб. Ни одни тела в геометрии не обладают таким совершенством, как правильные многогранники. Все названия этих геометрических тел произошли из Древней Греции. Они означают количество граней: тетраэдр - четырехгранный, гексаэдр - шестигранный, октаэдр - восьмигранный, додекаэдр - двенадцатигранный, икосаэдр - двадцатигранный. Все эти геометрические тела занимали важнейшее место в концепции Платона о мироздании. Четыре из них олицетворяли стихии или сущности: тетраэдр - огонь, икосаэдр - воду, куб - землю, октаэдр - воздух. Додекаэдр воплощал все сущее. Он считался главным, поскольку был символом мироздания.

Обобщение понятия многогранника

Многогранником является совокупность конечного числа многоугольников такая, что:

  • каждая из сторон любого из многоугольников является одновременно и стороной только одного другого многоугольника по той же стороне;
  • от каждого из многоугольников можно дойти до других переходя по смежным с ним многоугольникам.

Многоугольники, составляющие многогранник, представляют собой его грани, а их стороны - ребра. Вершинами многогранников являются вершины многоугольников. Если под понятием многоугольник понимают плоские замкнутые ломаные, то приходят к одному определению многогранника. В том случае, когда под этим понятием подразумевают часть плоскости, что ограничена ломаными линиями, то следует понимать поверхность, состоящую из многоугольных кусочков. называют тело, лежащее по одну сторону плоскости, прилегающей к его грани.

Другое определение многогранника и его элементов

Многогранником называют поверхность, состоящую из многоугольников, которая ограничивает геометрическое тело. Они бывают:

  • невыпуклыми;
  • выпуклыми (правильные и неправильные).

Правильный многогранник - это выпуклый многогранник с максимальной симметрией. Элементы правильных многогранников:

  • тетраэдр: 6 ребер, 4 грани, 5 вершин;
  • гексаэдр (куб): 12, 6, 8;
  • додекаэдр: 30, 12, 20;
  • октаэдр: 12, 8, 6;
  • икосаэдр: 30, 20, 12.

Теорема Эйлера

Она устанавливает связь между числом ребер, вершин и граней, топологически эквивалентных сфере. Складывая количество вершин и граней (В + Г) у различных правильных многогранников и сравнивая их с количеством ребер, можно установить одну закономерность: сумма количества граней и вершин равняется числу ребер (Р), увеличенному на 2. Можно вывести простую формулу:

  • В + Г = Р + 2.

Эта формула верна для всех выпуклых многогранников.

Основные определения

Понятие правильного многогранника невозможно описать одним предложением. Оно более многозначное и объемное. Чтобы тело было признано таковым, необходимо, чтобы оно отвечало ряду определений. Так, геометрическое тело будет являться правильным многогранником при выполнении таких условий:

  • оно выпуклое;
  • одинаковое количество ребер сходится в каждой из его вершин;
  • все грани его - правильные многоугольники, равные друг другу;
  • все его равны.

Свойства правильных многогранников

Существует 5 разных типов правильных многогранников:

  1. Куб (гексаэдр) - у него плоский угол при вершине составляет 90°. Он имеет 3-гранный угол. Сумма плоских углов у вершины составляет 270°.
  2. Тетраэдр - плоский угол при вершине - 60°. Он имеет 3-гранный угол. Сумма плоских углов у вершины - 180°.
  3. Октаэдр - плоский угол при вершине - 60°. Он имеет 4-гранный угол. Сумма плоских углов у вершины - 240°.
  4. Додекаэдр - плоский угол при вершине 108°. Он имеет 3-гранный угол. Сумма плоских углов у вершины - 324°.
  5. Икосаэдр - у него плоский угол при вершине - 60°. Он имеет 5-гранный угол. Сумма плоских углов у вершины составляет 300°.

Площадь поверхности этих геометрических тел (S) вычисляется, как площадь правильного многоугольника, умноженная на количество его граней (G):

  • S = (a: 2) х 2G ctg π/p.

Объем правильного многогранника

Эта величина вычисляется путем умножения объема правильной пирамиды, в основании которой находится правильный многоугольник, на число граней, а высота ее является радиусом вписанной сферы (r):

  • V = 1: 3rS.

Объемы правильных многогранников

Как и любое другое геометрическое тело, правильные многогранники имеют различные объемы. Ниже представлены формулы, по которым можно их вычислить:

  • тетраэдр: α х 3√2: 12;
  • октаэдр: α х 3√2: 3;
  • икосаэдр; α х 3;
  • гексаэдр (куб): 5 х α х 3 х (3 + √5) : 12;
  • додекаэдр: α х 3 (15 + 7√5) : 4.

Гексаэдр и октаэдр являются дуальными геометрическими телами. Иными словами, они могут получиться друг из друга в том случае, если центр тяжести грани одного принимается за вершину другого, и наоборот. Также дуальными являются икосаэдр и додекаэдр. Сам себе дуален только тетраэдр. По способу Евклида можно получить додекаэдр из гексаэдра с помощью построения «крыш» на гранях куба. Вершинами тетраэдра будут любые 4 вершины куба, не смежные попарно по ребру. Из гексаэдра (куба) можно получить и другие правильные многогранники. Несмотря на то что есть бесчисленное множество, правильных многогранников существует всего 5.

Радиусы правильных многоугольников

С каждым из этих геометрических тел связаны 3 концентрические сферы:

  • описанная, проходящая через его вершины;
  • вписанная, касающаяся каждой его грани в центре ее;
  • срединная, касающаяся всех ребер в середине.

Радиус сферы описанной рассчитывается по такой формуле:

  • R = a: 2 х tg π/g х tg θ: 2.

Радиус сферы вписанной вычисляется по формуле:

  • R = a: 2 х ctg π/p х tg θ: 2,

где θ - двухгранный угол, который находится между смежными гранями.

Радиус сферы срединной можно вычислить по следующей формуле:

  • ρ = a cos π/p: 2 sin π/h,

где h величина = 4,6 ,6,10 или 10. Отношение описанных и вписанных радиусов симметрично относительно p и q. Оно рассчитывается по формуле:

  • R/r = tg π/p х tg π/q.

Симметрия многогранников

Симметрия правильных многогранников вызывает основной интерес к этим геометрическим телам. Под ней понимают такое движение тела в пространстве, которое оставляет одно и то же количество вершин, граней и ребер. Другими словами, под действием преобразования симметрии ребро, вершина, грань или сохраняет свое первоначальное положение, или перемещается в исходное положение другого ребра, другой вершины или грани.

Элементы симметрии правильных многогранников свойственны всем видам таких геометрических тел. Здесь речь ведется о тождественном преобразовании, которое оставляет любую из точек в исходном положении. Так, при повороте многоугольной призмы можно получить несколько симметрий. Любая из них может быть представлена как произведение отражений. Симметрию, которая является произведением четного количества отражений, называют прямой. Если же она является произведением нечетного количества отражений, то ее называют обратной. Таким образом, все повороты вокруг прямой представляют собой прямую симметрию. Любое отражение многогранника - это обратная симметрия.

Чтобы лучше разобраться в элементах симметрии правильных многогранников, можно взять пример тетраэдра. Любая прямая, которая будет проходить через одну из вершин и центр этой геометрической фигуры, будет проходить и через центр грани, противоположной ей. Каждый из поворотов на 120 и 240° вокруг прямой принадлежит к множественному числу симметрий тетраэдра. Поскольку у него по 4 вершины и грани, то получается всего восемь прямых симметрий. Любая из прямых, проходящих через середину ребра и центр этого тела, проходит через середину его противоположного ребра. Любой поворот на 180°, называемый полуоборотом, вокруг прямой является симметрией. Поскольку у тетраэдра есть три пары ребер, то получится еще три прямые симметрии. Исходя из вышеизложенного, можно сделать вывод, что общее число прямых симметрий, и в том числе тождественное преобразование, будет доходить до двенадцати. Других прямых симметрий у тетраэдра не существует, но при этом у него есть 12 обратных симметрий. Следовательно, тетраэдр характеризуется всего 24 симметриями. Для наглядности можно построить модель правильного тетраэдра из картона и убедиться, что это геометрическое тело действительно имеет всего 24 симметрии.

Додекаэдр и икосаэдр - наиболее близкие к сфере тела. Икосаэдр обладает наибольшим числом граней, наибольшим и плотнее всего может прижаться к вписанной сфере. Додекаэдр обладает наименьшим угловым дефектом, наибольшим телесным углом при вершине. Он может максимально заполнить свою описанную сферу.

Развертки многогранников

Правильные которых мы все склеивали в детстве, имеют много понятий. Если есть совокупность многоугольников, каждая сторона которых отождествлена с только одной стороной многогранника, то отождествление сторон должно соответствовать двум условиям:

  • от каждого многоугольника можно перейти по многоугольникам, имеющим отождествленную сторону;
  • отождествляемые стороны должны иметь одинаковую длину.

Именно совокупность многоугольников, которые удовлетворяют эти условия, и называется разверткой многогранника. Каждое из этих тел имеет их несколько. Так, например, у куба их насчитывается 11 штук.

Радиусы, площади и объёмы

С каждым правильным многогранником связаны три концентрические сферы:
Описанная сфера, проходящая через вершины многогранника;
Срединная сфера, касающаяся каждого его ребра в середине;
Вписанная сфера, касающаяся каждой его грани в её центре.

Радиусы описанной () и вписанной () сфер задаются формулами:

где θ - двугранный угол между смежными гранями многогранника. Радиус срединной сферы задаётся формулой:

где h - величина описанная выше, при определении двугранных углов (h = 4, 6, 6, 10 или 10). Отношения описанных радиусов к вписанным радиусам симметрично относительно p и q:

Лощадь поверхности S правильного многогранника {p, q} вычисляется, как площадь правильного p-угольника, умноженная на число граней Г:

Объем правильного многогранника вычисляется, как умноженный на число граней объём правильной пирамиды, основанием которой служит правильный p-угольник, а высотой - радиус вписанной сферы r:



История.

Правильные многогранники известны с древнейших времён. Их орнаментные модели можно найти на резных каменных шарах, созданных в период позднего неолита, в Шотландии, как минимум за 1000 лет до Платона. В костях, которыми люди играли на заре цивилизации, уже угадываются формы правильных многогранников. В значительной мере правильные многогранники были изучены древними греками. Некоторые источники (такие как Прокл Диадох) приписывают честь их открытия Пифагору. Другие утверждают, что ему были знакомы только тетраэдр, куб и додекаэдр, а честь открытия октаэдра и икосаэдра принадлежит Теэтету Афинскому, современнику Платона. В любом случае, Теэтет дал математическое описание всем пяти правильным многогранникам и первое известное доказательство того, что их ровно пять.
Правильные многогранники характерны для философии Платона, в честь которого и получили название «платоновы тела». Платон писал о них в своём трактате Тимей (360г до н. э.), где сопоставил каждую из четырёх стихий (землю, воздух, воду и огонь) определённому правильному многограннику. Земля сопоставлялась кубу, воздух - октаэдру, вода - икосаэдру, а огонь - тетраэдру. Для возникновения данных ассоциаций были следующие причины: жар огня ощущается чётко и остро (как маленькие тетраэдры); воздух состоит из октаэдров: его мельчайшие компоненты настолько гладкие, что их с трудом можно почувствовать; вода выливается, если её взять в руку, как будто она сделана из множества маленьких шариков (к которым ближе всего икосаэдры); в противоположность воде, совершенно непохожие на шар кубики составляют землю, что служит причиной тому, что земля рассыпается в руках, в противоположность плавному току воды. По поводу пятого элемента, додекаэдра, Платон сделал смутное замечание: «…его бог определил для Вселенной и прибегнул к нему в качестве образца». Аристотель добавил пятый элемент - эфир и постулировал, что небеса сделаны из этого элемента, но он не сопоставлял его платоновскому пятому элементу. Евклид дал полное математическое описание правильных многогранников в последней, XIII книге Начал. Предложения 13-17 этой книги описывают структуру тетраэдра, октаэдра, куба, икосаэдра и додекаэдра в данном порядке. Для каждого многогранника Евклид нашёл отношение диаметра описанной сферы к длине ребра. В 18-м предложении утверждается, что не существует других правильных многогранников. Андреас Шпейзер отстаивал точку зрения, что построение пяти правильных многогранников является главной целью дедуктивной системы геометрии в том виде, как та была создана греками и канонизирована в «Началах» Евклида. Большое количество информации XIII книги «Начал», возможно, взято из трудов Теэтета. В XVI веке немецкий астроном Иоганн Кеплер пытался найти связь между пятью известными на тот момент планетами Солнечной системы (исключая Землю) и правильными многогранниками. В «Тайне мира», опубликованной в 1596 году, Кеплер изложил свою модель Солнечной системы. В ней пять правильных многогранников помещались один в другой и разделялись серией вписанных и описанных сфер. Каждая из шести сфер соответствовала одной из планет (Меркурию, Венере, Земле, Марсу, Юпитеру и Сатурну). Многогранники были расположены в следующем порядке (от внутреннего к внешнему): октаэдр, за ним икосаэдр, додекаэдр, тетраэдр и, наконец, куб. Таким образом, структура Солнечной системы и отношения расстояний между планетами определялись правильными многогранниками. Позже от оригинальной идеи Кеплера пришлось отказаться, но результатом его поисков стало открытие двух законов орбитальной динамики - законов Кеплера, - изменивших курс физики и астрономии, а также правильных звёздчатых многогранников (тел Кеплера-Пуансо).