Большая энциклопедия нефти и газа. Уравнение эйнштейна для фотоэффекта

ФОТОЭФФЕКТ, группа явлений, связанных с освобождением электронов твердого тела от внутриатомной связи под действием электромагнитного излучения. Различают: 1) внешний фотоэффект, или фотоэлектронная эмиссия, испускание электронов с поверхности… … Современная энциклопедия

ФОТОЭФФЕКТ - явление, связанное с освобождением электронов твердого тела (или жидкости) под действием электромагнитного излучения. Различают:..1) внешний фотоэффект испускание электронов под действием света (фотоэлектронная эмиссия), ? излучения и др.;..2)… … Большой Энциклопедический словарь

ФОТОЭФФЕКТ - испускание эл нов в вом под действием эл. магн. излучения. Ф. был открыт в 1887 нем. физиком Г. Герцем. Первые фундам. исследования Ф. выполнены А. Г. Столетовым (1888), а затем нем. физиком Ф. Ленардом (1899). Первое теоретич. объяснение законов … Физическая энциклопедия

фотоэффект - сущ., кол во синонимов: 2 фото эффект (1) эффект (29) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

фотоэффект - — [В.А.Семенов. Англо русский словарь по релейной защите] Тематики релейная защита EN photoeffect … Справочник технического переводчика

ФОТОЭФФЕКТ - (1) вентильный возникновение электродвижущей силы (фотоЭДС) между двумя разнородными полупроводниками или между полупроводником и металлом под действием электромагнитного излучения; (2) Ф. внешний (фотоэлектронная эмиссия) испускание электронов с … Большая политехническая энциклопедия

фотоэффект - а; м. Физ. Изменение свойств вещества под воздействием световой энергии; фотоэлектрический эффект. * * * фотоэффект явление, связанное с освобождением электронов твёрдого тела (или жидкости) под действием электромагнитного излучения. Различают:… … Энциклопедический словарь

Фотоэффект - испускание электронов веществом под действием электромагнитного излучения (Фотонов). Ф. был открыт в 1887 Г. Герцем. Первые фундаментальные исследования Ф, выполнены А. Г. Столетовым (1888). Он установил, что в возникновении фототока в… … Большая советская энциклопедия

фотоэффект - (см. фото... + аффект) физ. изменение электрических свойств вещества под действием электромагнитных излучений (света, ультрафиолетовых, рентгеновских и других лучей), напр, испускание электронов вовне под действием света (внешний ф.), изменение… … Словарь иностранных слов русского языка

Книги

  • , П.С. Тартаковский. Воспроизведено в оригинальной авторской орфографии издания 1940 года (издательство`ГИТТЛ`). В… Купить за 2220 грн (только Украина)
  • Внутренний фотоэффект в диэлектриках , П.С. Тартаковский. Эта книга будет изготовлена в соответствии с Вашим заказом по технологии Print-on-Demand. Воспроизведено в оригинальной авторской орфографии издания 1940 года (издательство "ГИТТЛ"…

Фотоэлектрический эффект был открыт в 1887 году немецким физиком Г. Герцем и в 1888-1890 годах экспериментально исследован А. Г. Столетовым. Наиболее полное исследование явления фотоэффекта было выполнено Ф. Ленардом в 1900 г. К этому времени уже был открыт электрон (1897 г., Дж. Томсон), и стало ясно, что фотоэффект (или точнее - внешний фотоэффект) состоит в вырывании электронов из вещества под действием падающего на него света.

Схема экспериментальной установки для исследования фотоэффекта изображена на рис. 5.2.1.

В экспериментах использовался стеклянный вакуумный баллон с двумя металлическими электродами, поверхность которых была тщательно очищена. К электродам прикладывалось некоторое напряжение U , полярность которого можно было изменять с помощью двойного ключа. Один из электродов (катод K) через кварцевое окошко освещался монохроматическим светом некоторой длины волны λ. При неизменном световом потоке снималась зависимость силы фототока I от приложенного напряжения. На рис. 5.2.2 изображены типичные кривые такой зависимости, полученные при двух значениях интенсивности светового потока, падающего на катод.

Кривые показывают, что при достаточно больших положительных напряжениях на аноде A фототок достигает насыщения, так как все электроны, вырванные светом из катода, достигают анода. Тщательные измерения показали, что ток насыщения I н прямо пропорционален интенсивности падающего света. Когда напряжение на аноде отрицательно, электрическое поле между катодом и анодом тормозит электроны. Анода могут достичь только те электроны, кинетическая энергия которых превышает |eU |. Если напряжение на аноде меньше, чем -U з, фототок прекращается. Измеряя U з, можно определить максимальную кинетическую энергию фотоэлектронов:

К удивлению ученых, величина U з оказалась независящей от интенсивности падающего светового потока. Тщательные измерения показали, что запирающий потенциал линейно возрастает с увеличением частоты ν света (рис. 5.2.3).

Многочисленными экспериментаторами были установлены следующие основные закономерности фотоэффекта:

1. Максимальная кинетическая энергия фотоэлектронов линейно возрастает с увеличением частоты света ν и не зависит от его интенсивности.

2. Для каждого вещества существует так называемая красная граница фотоэффекта , т. е. наименьшая частота ν min , при которой еще возможен внешний фотоэффект.

3. Число фотоэлектронов, вырываемых светом из катода за 1 с, прямо пропорционально интенсивности света.

4. Фотоэффект практически безынерционен, фототок возникает мгновенно после начала освещения катода при условии, что частота света ν > ν min .

Все эти закономерности фотоэффекта в корне противоречили представлениям классической физики о взаимодействии света с веществом. Согласно волновым представлениям при взаимодействии с электромагнитной световой волной электрон должен был бы постепенно накапливать энергию, и потребовалось бы значительное время, зависящее от интенсивности света, чтобы электрон накопил достаточно энергии для того, чтобы вылететь из катода. Как показывают расчеты, это время должно было бы исчисляться минутами или часами. Однако, опыт показывает, что фотоэлектроны появляются немедленно после начала освещения катода. В этой модели также было невозможно понять существование красной границы фотоэффекта. Волновая теория света не могла объяснить независимость энергии фотоэлектронов от интенсивности светового потока и пропорциональность максимальной кинетической энергии частоте света.

Таким образом, электромагнитная теория света оказалась неспособной объяснить эти закономерности.

Выход был найден А. Эйнштейном в 1905 г. Теоретическое объяснение наблюдаемых закономерностей фотоэффекта было дано Эйнштейном на основе гипотезы М. Планка о том, что свет излучается и поглощается определенными порциями, причем энергия каждой такой порции определяется формулой E = h ν, где h - постоянная Планка. Эйнштейн сделал следующий шаг в развитии квантовых представлений. Он пришел к выводу, что свет имеет прерывистую (дискретную) структуру . Электромагнитная волна состоит из отдельных порций - квантов , впоследствии названных фотонами . При взаимодействии с веществом фотон целиком передает всю свою энергию h ν одному электрону. Часть этой энергии электрон может рассеять при столкновениях с атомами вещества. Кроме того, часть энергии электрона затрачивается на преодоление потенциального барьера на границе металл-вакуум. Для этого электрон должен совершить работу выхода A , зависящую от свойств материала катода. Наибольшая кинетическая энергия, которую может иметь вылетевший из катода фотоэлектрон, определяется законом сохранения энергии:

Эту формулу принято называть уравнением Эйнштейна для фотоэффекта .

С помощью уравнения Эйнштейна можно объяснить все закономерности внешнего фотоэффекта. Из уравнения Эйнштейна следуют линейная зависимость максимальной кинетической энергии от частоты и независимость от интенсивности света, существование красной границы, безынерционность фотоэффекта. Общее число фотоэлектронов, покидающих за 1 с поверхность катода, должно быть пропорционально числу фотонов, падающих за то же время на поверхность. Из этого следует, что ток насыщения должен быть прямо пропорционален интенсивности светового потока.

Как следует из уравнения Эйнштейна, тангенс угла наклона прямой, выражающей зависимость запирающего потенциала U з от частоты ν (рис. 5.2.3), равен отношению постоянной Планка h к заряду электрона e :

Это позволяет экспериментально определить значение постоянной Планка. Такие измерения были выполнены в 1914 г. Р. Милликеном и дали хорошее согласие со значением, найденным Планком. Эти измерения позволили также определить работу выхода A :

где c - скорость света, λ кр - длина волны, соответствующая красной границе фотоэффекта. У большинства металлов работа выхода A составляет несколько электрон-вольт (1 эВ = 1,602·10 -19 Дж). В квантовой физике электрон-вольт часто используется в качестве энергетической единицы измерения. Значение постоянной Планка, выраженное в электрон-вольтах в секунду, равно

Среди металлов наименьшей работой выхода обладают щелочные элементы. Например, у натрия A = 1,9 эВ, что соответствует красной границе фотоэффекта λ кр ≈ 680 нм. Поэтому соединения щелочных металлов используют для создания катодов в фотоэлементах , предназначенных для регистрации видимого света.

Итак, законы фотоэффекта свидетельствуют, что свет при испускании и поглощении ведет себя подобно потоку частиц, получивших название фотонов или световых квантов .

Энергия фотонов равна

следует, что фотон обладает импульсом

Таким образом, учение о свете, совершив виток длительностью в два столетия, вновь возвратилось к представлениям о световых частицах - корпускулах.

Но это не был механический возврат к корпускулярной теории Ньютона. В начале XX века стало ясно, что свет обладает двойственной природой. При распространении света проявляются его волновые свойства (интерференция, дифракция, поляризация), а при взаимодействии с веществом - корпускулярные (фотоэффект). Эта двойственная природа света получила название корпускулярно-волнового дуализма , о которой говорил еще Ломоносов. Позже двойственная природа была открыта у электронов и других элементарных частиц. Классическая физика не может дать наглядной модели сочетания волновых и корпускулярных свойств у микрообъектов. Движением микрообъектов управляют не законы классической механики Ньютона, а законы квантовой механики. Теория излучения абсолютно черного тела, развитая М. Планком, и квантовая теория фотоэлектрического эффекта Эйнштейна лежат в основании этой современной науки.

Как бы ни был среднестатистический человек далёк в своей повседневной жизни от пройденной некогда школьной программы, она нет-нет да и заставит о себе вспомнить. Именно так происходит, когда речь заходит о явлении внешнего фотоэффекта.

Определение

Фотоэффектом в физике принято считать процесс выравнивания электронов в атомах, молекулах вещества, который возникает и происходит под воздействием света. А внешний фотоэффект - процесс, при котором электроны выбиваются светом с такой силой, что вылетают за внешние пределы своего вещества.

Немного истории и практики

Впервые на этот удивительный факт обратил внимание учёный-физик из Германии в далёком 1887-м году. Изучение открытия было продолжено коллегой Герца, русским физиком Столетовым. А гениальный Эйнштейн разработал теорию фотоэффекта на основе идей С тех пор внешний фотоэффект изучен достаточно глубоко и разносторонне, а полученные знания применяются в полном объёме при разработке и производстве приборов на основе фотоэлементов. Если брать самый элементарный пример, то это автоматические работающие на фотоэлементах.

Механизмы такого типа работают на Однако фотоэлементы, которые используют только внешний фотоэффект, трансформируют энергию, получаемую при излучении, в электрическую не полностью. Поэтому применять их в качестве источников электроэнергии особого смысла нет, чего не скажешь об автоматике. Именно при помощи световых пучков происходит управление электроцепями в автоматических механизмах.

Без преувеличения можно утверждать, что открытие фотоэффекта стало поистине революционным событием в физике. Вот самые значимые его последствия:

  • перед учёными приоткрылась тайна природы света, светового луча;
  • кино из немого стало «говорящим», были придуманы способы озвучки, да и сам факт передачи движущегося изображения тоже стал возможен благодаря фотоэффекту;
  • создание на основе фотоэлектронных приборов таких станков и «умных машин», которые по заданным параметрам без участия человека изготавливают различные детали;
  • множество различных механизмов, основанных на работе фотоэлектронной автоматики.

Таким образом, сам фотоэффект и его применение стали своего рода прорывом в современной технике.

Классификация фотоэлементов

Фотоэффекты делятся на несколько видов в зависимости от своих свойств и выполняемых функций.

  1. Внешний фотоэффект (по-другому - фотоэлектронная эмиссия). Электроны, которые вылетают за пределы вещества при его возникновении, получили название фотоэлектронов. А который они образуют, когда упорядоченно движутся по внешнему электрическому полю, стал называться фототоком.
  2. Внутренний фотоэффект, влияющий на фотопроводимость вещества. Он возникает, когда электроны перераспределяются по полупроводникам и диэлектрикам в зависимости от их энергетического состояния и агрегатного - твёрдого или жидкого. Явление перераспределения происходит под влиянием света. Именно тогда увеличивается электропроводность вещества, т.е. получается эффект фотопроводимости.
  3. Вентильный фотоэффект - переход фотоэлектронов из своих тел в другие твёрдые тела (полупроводники) или жидкие (электролиты).

Внешний фотоэффект лежит в основе работы современных вакуумных фотоэлементов. Они изготавливаются в виде стеклянных колб, у которых внутренняя поверхность частично покрывается тонким слоем металлического напыления. Незначительная толщина слоя обеспечивает малый рабочий выход. Прозрачное окошко колбы пропускает внутрь свет, а находящийся внутри неё анод в виде проволочной петли или диска улавливает фотоэлектроны. Если анод соединить с положительным полюсом батареи, цепь замкнётся, по ней пойдёт электрический ток. Т.е. вакуумные фотоэлементы могут включать или выключать реле.

Комбинируя фотоэлементы и реле, можно создать различные «видящие» автоматы, к примеру, автомат в метро.

Итак, будучи заложен в основу многих производственных процессов, внешний фотоэффект как великое физическое открытие стал залогом успешной работы промышленной автоматики.

В 1887 году Генрих Рудольф Герц обнаружил явление, впоследствии названное фотоэффектом. Его суть он определил в следующем:

Если свет от ртутной лампы направить на металл натрий, то с его поверхности будут вылетать электроны.

Современная формулировка фотоэффекта иная:

При падении световых квантов на вещество и при их последующем поглощении в веществе будут частично или полностью освобождаться заряженные частицы.

Другими словами при поглощении световых фотонов наблюдается:

  1. Эмиссия электронов из вещества
  2. Изменение электропроводности вещества
  3. Возникновение фото-ЭДС на границе сред с различной проводимостью (например, металл-полупроводник)

В настоящее время существует три вида фотоэффекта:

  1. Внутренний фотоэффект. Заключается в изменении проводимости полупроводников. Он используется в фоторезисторах, которые применяются в дозиметрах рентгеновского и ультрафиолетового излучения, также используется в медицинских приборах (оксигемометр) и в пожарной сигнализации.
  2. Вентильный фотоэффект. Заключается в возникновении фото-ЭДС на границе веществ с разным типом проводимости, в результате разделения носителей электрического заряда электрическим полем. Он используется в солнечных батареях, в селеновых фотоэлементах и датчиках, регистрирующих уровень освещенности.
  3. Внешний фотоэффект. Как уже говорилось ранее, это процесс выхода электронов из вещества в вакуум под действием квантов электромагнитного излучения.

Законы внешнего фотоэффекта.

Они были установлены Филиппом Ленардом и Александром Григорьевичем Столетовым на рубеже 20 века. Эти ученые измеряли число выбитых электронов и их скорость в зависимости от интенсивности и частоты подающего излучения.

Первый закон (закон Столетова):

Сила фототока насыщения прямо пропорциональна световому потоку, т.е. падающему излучению на вещество.


Теоретическая формулировка: При напряжении между электродами равном нулю фототок не равен нулю. Это объясняется тем, что после выхода из металла электроны обладают кинетической энергией. При наличии напряжения между анодом и катодом сила фототока растет с ростом напряжения, а при определенном значении напряжения ток достигает своего максимального значения (фототок насыщения). Это значит, что все электроны ежесекундно испускаемые катодом под действием электромагнитного излучения принимают участие в создании тока. При смене полярности ток падает и скоро становится равным нулю. Здесь электорон совершает работу против задерживающего поля за счет кинетпческой энергии. При увеличении интенсивности излучения (рост числа фотонов) растет число поглощенных металлом квантов энергии, а следовательно и число вылетевших электронов. Значит, чем больше световой поток, тем больше фототок насыщения.

I ф нас ~ Ф, I ф нас = k·Ф

k - коэффициент пропорциональности. Чувствительность зависит от природы металла. Чувствительность металла к фотоэффекту увеличивается с увеличением частоты света (при уменьшении длины волны).

Эта формулировка закона является технической. Она справедлива для вакуумных фотоэлектрических приборов.

Количество испускаемых электронов прямопропорционально плотности падающего потока при его постоянном спектральном составе.

Второй закон (закон Эйнштейна):

Максимальная начальная кинетическая энергия фотоэлектрона промопропорциональна частоте падающего лучистого потока и не зависит от его интенсивности.

E kē = => ~ hυ

Третий закон (закон “красной границы”):

Для каждого вещества существует минимальная частота или максимальная длина волны, за пределами которой фотоэффект отсутствует.

Эта частота (длина волны) называется “красной границей” фотоэффекта.

Таким образом, он устанавливает условия фотоэффекта для данного вещества в зависимости от работы выхода электрона из вещества и от энергии падающих фотонов.

Если энергия фотона меньше работы выхода электрона из вещества, то фотоэффект отсутствует. Если же энергия фотона превышает работу выхода, то ее избыток после поглощения фотона идет на начальную кинетическую энергию фотоэлектрона.

Применение его для объяснения законов фотоэффекта.

Уравнение Эйнштейна для фотоэффекта является частным случаем закона сохранения и превращения энергии. Свою теорию он основал на законах еще зарождающейся квантовой физики.

Эйнштейн сформулировал три положения:

  1. При воздействии с электронами вещества падающие фотоны поглощаются полностью.
  2. Один фотон взаимодействует только с одним электроном.
  3. Один поглощенный фотон способствует выходу только одного фотоэлектрона с некоторой E kē .

Энергия фотона расходуется на работу выхода (А вых) электрона из вещества и на его начальную кинетическую энергию, которая будет максимальна, если электрон выходит с поверхности вещества.

E kē = hυ - А вых

Чем больше частота падающего излучения, тем больше энергия фотонов и тем больше (за вычетом работы выхода) остается на начальную кинетическую энергию фотоэлектронов.

Чем интенсивнее падающее излучение, тем больше фотонов входит в световой поток и тем больше электронов смогут выйти из вещества и участвовать в создании фототока. Именно поэтому сила фототока насыщения промопропорциональна световому потоку (I ф нас ~ Ф). Однако начальная кинетическая энергия от интенсивности не зависит, т.к. один электрон поглощает энергию только одного фотона.

Законы внешнего фотоэффекта

Наряду с тепловым излучением, явлением которое не укладывается в рамки классической физики, является фотоэффект.

Внешним фотоэффектом называется явление испускания электронов веществом при облучении электромагнитными волнами.

Фотоэффект был открыт Герцем в 1887 году. Он заметил, что искра между цинковыми шариками облегчается, если облучить межискровой промежуток светом. Экспериментально закон внешнего фотоэффектом изучил Столетов в 1888 году. Схема для исследования фотоэффекта приведена на рис.1.

Рис.1.

Катод и анод располагается в вакуумной трубке, так как ничтожные загрязнения поверхности металла влияют на эмиссию электронов. Катод освещается монохроматическим светом через кварцевое окно (кварц, в отличие от обычного стекла, пропускает ультрафиолетовый свет). Напряжение между анодом и катодом регулируется потенциометром и измеряется вольтметром . Две аккумуляторные батареи и , включенные навстречу друг другу, позволяют с помощью потенциометра изменять значение и знак напряжения. Сила фототока измеряется гальванометром .

На рис.2. изображены кривые зависимости силы фототока от напряжения, соответствующие различным освещенностям катода и (). Частота света в обоих случаях одинакова.

где и - заряд и масса электрона.

По мере увеличения напряжения фототок возрастает, так как все большее число фотоэлектронов достигает анода. Максимальное значение фототока, называется фототоком насыщения. Он соответствует таким значениям напряжения, при которых все электроны, выбитые из катода, достигают анода: , где - число фотоэлектронов, вылетающих из катода за 1 секунду.

Столетов опытным путем установил следующие законы фотоэффекта:

При объяснении второго и третьего законов возникли серьезные трудности. Согласно электромагнитной теории, вырывание свободных электронов из металла должно явиться результатом их «раскачивания» в электрическом поле волны. Тогда не понятно, почему максимальная скорость вылетающих электронов зависит от частоты света, а не от амплитуды колебаний вектора напряженности электрического поля и связанной с ней интенсивностью волны. Трудности в истолковании второго и третьего законов фотоэффекта вызвали сомнения в универсальной применимости волновой теории света.

Уравнение Эйнштейна для фотоэффекта

В 1905 году Эйнштейн объяснил законы фотоэффекта с помощью предложенной им квантовой теории. Свет частотой не только излучается, как это предполагал Планк, но и поглощается веществом определенными порциями (квантами). Свет это поток дискретных световых квантов (фотонов), движущихся со скоростью света. Энергия кванта равна . Каждый квант поглощается только одним электроном. Поэтому число вырванных электронов должно быть пропорционально интенсивности света (1 закон фотоэффекта).

Энергия падающего фотона расходуется на совершение электроном работы выхода из металла и на сообщение вылетевшему фотоэлектрону кинетической энергии:

(2)

Уравнение (2) называется уравнением Эйнштейна для внешнего фотоэффекта. Уравнение Эйнштейна позволяет объяснить второй и третий законы фотоэффекта. Из уравнения (2) непосредственно следует, что максимальная кинетическая энергия возрастает с увеличением частоты падающего света. С уменьшением частоты кинетическая энергия уменьшается и при некоторой частоте она становиться равной нулю и фотоэффект прекращается (). Отсюда

где - число поглощенных фотонов.

При этом красная граница фотоэффекта сдвигается в сторону меньших частот:

. (5)

Кроме внешнего фотоэффекта известен еще и внутренний фотоэффект. При облучении твердых и жидких полупроводников и диэлектриков электроны из связанного состояния переходят в свободное, но при этом не вылетают наружу. Наличие свободных электронов приводит к возникновению фотопроводимости. Фотопроводимость это увеличение электропроводности вещества под действием света.

Фотон и его свойства

Явления интерференции, дифракции, поляризации можно объяснить только волновыми свойствами света. Однако фотоэффект и тепловое излучение – только корпускулярными (считая свет потоком фотонов). Волновое и квантовое описание свойств света дополняют друг друга. Свет одновременно волна и частица. Основные уравнения, устанавливающие связь между волновыми и корпускулярными свойствами следующие:

(7)

И - величины характеризующие частицу, и - волну.

Массу фотона найдем из соотношения (6): .

Фотон – это частица, которая всегда движется со скоростью света и имеет массу покоя равную нулю. Импульс фотона равен: .

Эффект Комптона

Наиболее полно корпускулярные свойства проявляются в эффекте Комптона. В 1923 году американский физик Комптон исследовал рассеяние рентгеновских лучей на парафине, атомы которого легкие.

Рассеяние рентгеновских лучей с волновой точки зрения связано вынужденными колебаниями электронов вещества, так что частота рассеянного света должна совпадать с частотой падающего света. Однако в рассеянном свете обнаружилась большая длина волны . не зависит от длины волны рассеиваемых рентгеновских лучей и от материала рассеивающего вещества, но зависит от направления рассеивания. Пусть - угол между направлением первичного пучка и направлением рассеянного света, тогда , где ( м).

Этот закон верен для легких атомов ( , , , ) имеющих электроны, слабо связанные с ядром. Процесс рассеяния можно объяснить упругим столкновением фотонов с электронами. Под действием рентгеновских лучей электроны легко отделяются от атома. Поэтому можно рассматривать рассеяние свободными электронами. Фотон, имеющий импульс , сталкивается с покоящимся электроном и отдает ему часть энергии, а сам приобретает импульс (рис.3).

Рис.3.

Используя законы сохранения энергии и импульса для абсолютно упругого удара, получим для выражение: , которое совпадает с экспериментальным, при этом , что и доказывает корпускулярную теорию света.

Люминесценция, фотолюминесценция и ее основные закономерности

Люминесценция – это неравновесное излучение, избыточное при данной температуре над тепловым излучением. Люминесценция возникает под действием внешних воздействий, не обусловленных нагреванием тела. Это холодное свечение. В зависимости от способа возбуждения различают: фотолюминесценцию (под действием света), хемилюминесценцию (под действием химических реакций), катодолюминесценцию (под действием быстрых электронов) и электролюминесценцию (под действием электрического поля).

Люминесценция прекращающаяся сразу ( с) после исчезновения внешнего воздействия, называется флуоресценцией. Если люминесценция исчезает через с после окончания воздействия, то она называется фосфоресценцией.

Вещества, которые люминесцируют, называются люминофорами. К ним относятся соединения урана, редких земель, а также сопряженные системы, у которых чередуются связи , ароматические соединения: флуоресциин, бензол, нафталин, антрацен.

Фотолюминесценция подчиняется закону Стокса: частота возбуждающего света больше испускаемой частоты , где - часть поглощенной энергии, переходящей в тепловую.

Основной характеристикой люминесценции является квантовый выход равный отношению числа поглощенных квантов к числу излученных. Есть вещества, у которых квантовый выход близок к 1 (например, флуоресциин). У антрацена квантовый выход равен 0,27.

Явление люминесценции получило широкое применение на практике. Например, люминесцентный анализ – метод определения состава вещества по характерному его свечению. Метод очень чувствительный (примерно ), позволяет обнаруживать ничтожное количество примесей и применяется для точнейших исследований в области химии, биологии, медицины и пищевой промышленности.

Люминесцентная дефектоскопия позволяет обнаружить тончайшие трещины на поверхности деталей машин (исследуемая поверхность покрывается для этого люминесцентным раствором, который после удаления остается в трещинах).

Люминофоры используются в люминесцентных лампах, являются активной средой оптических квантовых генераторов, применяются в электронно-оптических преобразователях. Используются для изготовления светящихся указателей различных приборов.

Физические принципы устройства приборов ночного видения

Основу прибора составляет электронно-оптический преобразователь (ЭОП), который преобразует невидимое глазом изображение объекта в ИК лучах в видимое изображение (рис.4).

Рис.4.

1 – фотокатод, 2 – электронная линза, 3 – люминесцирующий экран,

Инфракрасное излучение от объекта вызывает фотоэлектронную эмиссию с поверхности фотокатода, причем величина эмиссии с различных участков последнего изменяется в соответствии с распределением яркости спроецированного на него изображения. Фотоэлектроны ускоряются электрическим полем на участке между фотокатодом и экраном, фокусируются электронной линзой и бомбардируют экран, вызывая его люминесценцию. Интенсивность свечения отдельных точек экрана зависит от плотности потока фотоэлектронов, вследствие чего на экране возникает видимое изображение объекта.